Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-1=0
Ikki tarafini 9 ga bo‘ling.
\left(m-1\right)\left(m+1\right)=0
Hisoblang: m^{2}-1. m^{2}-1 ni m^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=1 m=-1
Tenglamani yechish uchun m-1=0 va m+1=0 ni yeching.
9m^{2}=9
9 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
m^{2}=\frac{9}{9}
Ikki tarafini 9 ga bo‘ling.
m^{2}=1
1 ni olish uchun 9 ni 9 ga bo‘ling.
m=1 m=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
9m^{2}-9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 9\left(-9\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 0 ni b va -9 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\times 9\left(-9\right)}}{2\times 9}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{-36\left(-9\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
m=\frac{0±\sqrt{324}}{2\times 9}
-36 ni -9 marotabaga ko'paytirish.
m=\frac{0±18}{2\times 9}
324 ning kvadrat ildizini chiqarish.
m=\frac{0±18}{18}
2 ni 9 marotabaga ko'paytirish.
m=1
m=\frac{0±18}{18} tenglamasini yeching, bunda ± musbat. 18 ni 18 ga bo'lish.
m=-1
m=\frac{0±18}{18} tenglamasini yeching, bunda ± manfiy. -18 ni 18 ga bo'lish.
m=1 m=-1
Tenglama yechildi.