Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-4=0
Ikki tarafini 9 ga bo‘ling.
\left(m-2\right)\left(m+2\right)=0
Hisoblang: m^{2}-4. m^{2}-4 ni m^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=2 m=-2
Tenglamani yechish uchun m-2=0 va m+2=0 ni yeching.
9m^{2}=36
36 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
m^{2}=\frac{36}{9}
Ikki tarafini 9 ga bo‘ling.
m^{2}=4
4 ni olish uchun 36 ni 9 ga bo‘ling.
m=2 m=-2
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
9m^{2}-36=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 9\left(-36\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 0 ni b va -36 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\times 9\left(-36\right)}}{2\times 9}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{-36\left(-36\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
m=\frac{0±\sqrt{1296}}{2\times 9}
-36 ni -36 marotabaga ko'paytirish.
m=\frac{0±36}{2\times 9}
1296 ning kvadrat ildizini chiqarish.
m=\frac{0±36}{18}
2 ni 9 marotabaga ko'paytirish.
m=2
m=\frac{0±36}{18} tenglamasini yeching, bunda ± musbat. 36 ni 18 ga bo'lish.
m=-2
m=\frac{0±36}{18} tenglamasini yeching, bunda ± manfiy. -36 ni 18 ga bo'lish.
m=2 m=-2
Tenglama yechildi.