Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9a^{2}+42a-49=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-42±\sqrt{42^{2}-4\times 9\left(-49\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-42±\sqrt{1764-4\times 9\left(-49\right)}}{2\times 9}
42 kvadratini chiqarish.
a=\frac{-42±\sqrt{1764-36\left(-49\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
a=\frac{-42±\sqrt{1764+1764}}{2\times 9}
-36 ni -49 marotabaga ko'paytirish.
a=\frac{-42±\sqrt{3528}}{2\times 9}
1764 ni 1764 ga qo'shish.
a=\frac{-42±42\sqrt{2}}{2\times 9}
3528 ning kvadrat ildizini chiqarish.
a=\frac{-42±42\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
a=\frac{42\sqrt{2}-42}{18}
a=\frac{-42±42\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. -42 ni 42\sqrt{2} ga qo'shish.
a=\frac{7\sqrt{2}-7}{3}
-42+42\sqrt{2} ni 18 ga bo'lish.
a=\frac{-42\sqrt{2}-42}{18}
a=\frac{-42±42\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. -42 dan 42\sqrt{2} ni ayirish.
a=\frac{-7\sqrt{2}-7}{3}
-42-42\sqrt{2} ni 18 ga bo'lish.
9a^{2}+42a-49=9\left(a-\frac{7\sqrt{2}-7}{3}\right)\left(a-\frac{-7\sqrt{2}-7}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+7\sqrt{2}}{3} ga va x_{2} uchun \frac{-7-7\sqrt{2}}{3} ga bo‘ling.