x uchun yechish
x = \frac{\sqrt{393} + 19}{16} \approx 2,426514225
x=\frac{19-\sqrt{393}}{16}\approx -0,051514225
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x\left(x-2\right)=x^{2}+x+1
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
9x^{2}-18x=x^{2}+x+1
9x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}-18x-x^{2}=x+1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}-18x=x+1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}-18x-x=1
Ikkala tarafdan x ni ayirish.
8x^{2}-19x=1
-19x ni olish uchun -18x va -x ni birlashtirish.
8x^{2}-19x-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -19 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 8\left(-1\right)}}{2\times 8}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361-32\left(-1\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361+32}}{2\times 8}
-32 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{393}}{2\times 8}
361 ni 32 ga qo'shish.
x=\frac{19±\sqrt{393}}{2\times 8}
-19 ning teskarisi 19 ga teng.
x=\frac{19±\sqrt{393}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{\sqrt{393}+19}{16}
x=\frac{19±\sqrt{393}}{16} tenglamasini yeching, bunda ± musbat. 19 ni \sqrt{393} ga qo'shish.
x=\frac{19-\sqrt{393}}{16}
x=\frac{19±\sqrt{393}}{16} tenglamasini yeching, bunda ± manfiy. 19 dan \sqrt{393} ni ayirish.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
Tenglama yechildi.
9x\left(x-2\right)=x^{2}+x+1
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
9x^{2}-18x=x^{2}+x+1
9x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}-18x-x^{2}=x+1
Ikkala tarafdan x^{2} ni ayirish.
8x^{2}-18x=x+1
8x^{2} ni olish uchun 9x^{2} va -x^{2} ni birlashtirish.
8x^{2}-18x-x=1
Ikkala tarafdan x ni ayirish.
8x^{2}-19x=1
-19x ni olish uchun -18x va -x ni birlashtirish.
\frac{8x^{2}-19x}{8}=\frac{1}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}-\frac{19}{8}x=\frac{1}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{19}{16}\right)^{2}
-\frac{19}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{16} olish uchun. Keyin, -\frac{19}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{1}{8}+\frac{361}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{16} kvadratini chiqarish.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{393}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{8} ni \frac{361}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{19}{16}\right)^{2}=\frac{393}{256}
x^{2}-\frac{19}{8}x+\frac{361}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{393}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{16}=\frac{\sqrt{393}}{16} x-\frac{19}{16}=-\frac{\sqrt{393}}{16}
Qisqartirish.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
\frac{19}{16} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}