x uchun yechish
x=\frac{\sqrt{66}}{2}+4\approx 8,062019202
x=-\frac{\sqrt{66}}{2}+4\approx -0,062019202
Grafik
Baham ko'rish
Klipbordga nusxa olish
18x=2x^{2}+2x-1
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
18x-2x^{2}=2x-1
Ikkala tarafdan 2x^{2} ni ayirish.
18x-2x^{2}-2x=-1
Ikkala tarafdan 2x ni ayirish.
16x-2x^{2}=-1
16x ni olish uchun 18x va -2x ni birlashtirish.
16x-2x^{2}+1=0
1 ni ikki tarafga qo’shing.
-2x^{2}+16x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{16^{2}-4\left(-2\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 16 ni b va 1 ni c bilan almashtiring.
x=\frac{-16±\sqrt{256-4\left(-2\right)}}{2\left(-2\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+8}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{264}}{2\left(-2\right)}
256 ni 8 ga qo'shish.
x=\frac{-16±2\sqrt{66}}{2\left(-2\right)}
264 ning kvadrat ildizini chiqarish.
x=\frac{-16±2\sqrt{66}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{66}-16}{-4}
x=\frac{-16±2\sqrt{66}}{-4} tenglamasini yeching, bunda ± musbat. -16 ni 2\sqrt{66} ga qo'shish.
x=-\frac{\sqrt{66}}{2}+4
-16+2\sqrt{66} ni -4 ga bo'lish.
x=\frac{-2\sqrt{66}-16}{-4}
x=\frac{-16±2\sqrt{66}}{-4} tenglamasini yeching, bunda ± manfiy. -16 dan 2\sqrt{66} ni ayirish.
x=\frac{\sqrt{66}}{2}+4
-16-2\sqrt{66} ni -4 ga bo'lish.
x=-\frac{\sqrt{66}}{2}+4 x=\frac{\sqrt{66}}{2}+4
Tenglama yechildi.
18x=2x^{2}+2x-1
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
18x-2x^{2}=2x-1
Ikkala tarafdan 2x^{2} ni ayirish.
18x-2x^{2}-2x=-1
Ikkala tarafdan 2x ni ayirish.
16x-2x^{2}=-1
16x ni olish uchun 18x va -2x ni birlashtirish.
-2x^{2}+16x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+16x}{-2}=-\frac{1}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{16}{-2}x=-\frac{1}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-8x=-\frac{1}{-2}
16 ni -2 ga bo'lish.
x^{2}-8x=\frac{1}{2}
-1 ni -2 ga bo'lish.
x^{2}-8x+\left(-4\right)^{2}=\frac{1}{2}+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=\frac{1}{2}+16
-4 kvadratini chiqarish.
x^{2}-8x+16=\frac{33}{2}
\frac{1}{2} ni 16 ga qo'shish.
\left(x-4\right)^{2}=\frac{33}{2}
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{33}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=\frac{\sqrt{66}}{2} x-4=-\frac{\sqrt{66}}{2}
Qisqartirish.
x=\frac{\sqrt{66}}{2}+4 x=-\frac{\sqrt{66}}{2}+4
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}