Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
x\left(9x-3\right)=0
x omili.
x=0 x=\frac{1}{3}
Tenglamani yechish uchun x=0 va 9x-3=0 ni yeching.
9x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -3 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±3}{2\times 9}
\left(-3\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{3±3}{2\times 9}
-3 ning teskarisi 3 ga teng.
x=\frac{3±3}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{6}{18}
x=\frac{3±3}{18} tenglamasini yeching, bunda ± musbat. 3 ni 3 ga qo'shish.
x=\frac{1}{3}
\frac{6}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{18}
x=\frac{3±3}{18} tenglamasini yeching, bunda ± manfiy. 3 dan 3 ni ayirish.
x=0
0 ni 18 ga bo'lish.
x=\frac{1}{3} x=0
Tenglama yechildi.
9x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
\frac{9x^{2}-3x}{9}=\frac{0}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{3}{9}\right)x=\frac{0}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=\frac{0}{9}
\frac{-3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x=0
0 ni 9 ga bo'lish.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Qisqartirish.
x=\frac{1}{3} x=0
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.