Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(9\left(x+1\right)\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(9x+9\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
9 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
81x^{2}+162x+81=\left(\sqrt{2x+5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(9x+9\right)^{2} kengaytirilishi uchun ishlating.
81x^{2}+162x+81=2x+5
2 daraja ko‘rsatkichini \sqrt{2x+5} ga hisoblang va 2x+5 ni qiymatni oling.
81x^{2}+162x+81-2x=5
Ikkala tarafdan 2x ni ayirish.
81x^{2}+160x+81=5
160x ni olish uchun 162x va -2x ni birlashtirish.
81x^{2}+160x+81-5=0
Ikkala tarafdan 5 ni ayirish.
81x^{2}+160x+76=0
76 olish uchun 81 dan 5 ni ayirish.
x=\frac{-160±\sqrt{160^{2}-4\times 81\times 76}}{2\times 81}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 81 ni a, 160 ni b va 76 ni c bilan almashtiring.
x=\frac{-160±\sqrt{25600-4\times 81\times 76}}{2\times 81}
160 kvadratini chiqarish.
x=\frac{-160±\sqrt{25600-324\times 76}}{2\times 81}
-4 ni 81 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{25600-24624}}{2\times 81}
-324 ni 76 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{976}}{2\times 81}
25600 ni -24624 ga qo'shish.
x=\frac{-160±4\sqrt{61}}{2\times 81}
976 ning kvadrat ildizini chiqarish.
x=\frac{-160±4\sqrt{61}}{162}
2 ni 81 marotabaga ko'paytirish.
x=\frac{4\sqrt{61}-160}{162}
x=\frac{-160±4\sqrt{61}}{162} tenglamasini yeching, bunda ± musbat. -160 ni 4\sqrt{61} ga qo'shish.
x=\frac{2\sqrt{61}-80}{81}
-160+4\sqrt{61} ni 162 ga bo'lish.
x=\frac{-4\sqrt{61}-160}{162}
x=\frac{-160±4\sqrt{61}}{162} tenglamasini yeching, bunda ± manfiy. -160 dan 4\sqrt{61} ni ayirish.
x=\frac{-2\sqrt{61}-80}{81}
-160-4\sqrt{61} ni 162 ga bo'lish.
x=\frac{2\sqrt{61}-80}{81} x=\frac{-2\sqrt{61}-80}{81}
Tenglama yechildi.
9\left(\frac{2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{2\sqrt{61}-80}{81}+5}
9\left(x+1\right)=\sqrt{2x+5} tenglamasida x uchun \frac{2\sqrt{61}-80}{81} ni almashtiring.
\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}
Qisqartirish. x=\frac{2\sqrt{61}-80}{81} tenglamani qoniqtiradi.
9\left(\frac{-2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{-2\sqrt{61}-80}{81}+5}
9\left(x+1\right)=\sqrt{2x+5} tenglamasida x uchun \frac{-2\sqrt{61}-80}{81} ni almashtiring.
-\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}-\frac{1}{9}
Qisqartirish. x=\frac{-2\sqrt{61}-80}{81} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=\frac{2\sqrt{61}-80}{81}
9\left(x+1\right)=\sqrt{2x+5} tenglamasi noyob yechimga ega.