x uchun yechish
x=\frac{2\left(\sqrt{61}-40\right)}{81}\approx -0,79480865
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(9\left(x+1\right)\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(9x+9\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
9 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
81x^{2}+162x+81=\left(\sqrt{2x+5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(9x+9\right)^{2} kengaytirilishi uchun ishlating.
81x^{2}+162x+81=2x+5
2 daraja ko‘rsatkichini \sqrt{2x+5} ga hisoblang va 2x+5 ni qiymatni oling.
81x^{2}+162x+81-2x=5
Ikkala tarafdan 2x ni ayirish.
81x^{2}+160x+81=5
160x ni olish uchun 162x va -2x ni birlashtirish.
81x^{2}+160x+81-5=0
Ikkala tarafdan 5 ni ayirish.
81x^{2}+160x+76=0
76 olish uchun 81 dan 5 ni ayirish.
x=\frac{-160±\sqrt{160^{2}-4\times 81\times 76}}{2\times 81}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 81 ni a, 160 ni b va 76 ni c bilan almashtiring.
x=\frac{-160±\sqrt{25600-4\times 81\times 76}}{2\times 81}
160 kvadratini chiqarish.
x=\frac{-160±\sqrt{25600-324\times 76}}{2\times 81}
-4 ni 81 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{25600-24624}}{2\times 81}
-324 ni 76 marotabaga ko'paytirish.
x=\frac{-160±\sqrt{976}}{2\times 81}
25600 ni -24624 ga qo'shish.
x=\frac{-160±4\sqrt{61}}{2\times 81}
976 ning kvadrat ildizini chiqarish.
x=\frac{-160±4\sqrt{61}}{162}
2 ni 81 marotabaga ko'paytirish.
x=\frac{4\sqrt{61}-160}{162}
x=\frac{-160±4\sqrt{61}}{162} tenglamasini yeching, bunda ± musbat. -160 ni 4\sqrt{61} ga qo'shish.
x=\frac{2\sqrt{61}-80}{81}
-160+4\sqrt{61} ni 162 ga bo'lish.
x=\frac{-4\sqrt{61}-160}{162}
x=\frac{-160±4\sqrt{61}}{162} tenglamasini yeching, bunda ± manfiy. -160 dan 4\sqrt{61} ni ayirish.
x=\frac{-2\sqrt{61}-80}{81}
-160-4\sqrt{61} ni 162 ga bo'lish.
x=\frac{2\sqrt{61}-80}{81} x=\frac{-2\sqrt{61}-80}{81}
Tenglama yechildi.
9\left(\frac{2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{2\sqrt{61}-80}{81}+5}
9\left(x+1\right)=\sqrt{2x+5} tenglamasida x uchun \frac{2\sqrt{61}-80}{81} ni almashtiring.
\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}
Qisqartirish. x=\frac{2\sqrt{61}-80}{81} tenglamani qoniqtiradi.
9\left(\frac{-2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{-2\sqrt{61}-80}{81}+5}
9\left(x+1\right)=\sqrt{2x+5} tenglamasida x uchun \frac{-2\sqrt{61}-80}{81} ni almashtiring.
-\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}-\frac{1}{9}
Qisqartirish. x=\frac{-2\sqrt{61}-80}{81} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=\frac{2\sqrt{61}-80}{81}
9\left(x+1\right)=\sqrt{2x+5} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}