x uchun yechish (complex solution)
x=\frac{11+\sqrt{167}i}{18}\approx 0,611111111+0,717935999i
x=\frac{-\sqrt{167}i+11}{18}\approx 0,611111111-0,717935999i
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-6x+2-5x=-6
Ikkala tarafdan 5x ni ayirish.
9x^{2}-11x+2=-6
-11x ni olish uchun -6x va -5x ni birlashtirish.
9x^{2}-11x+2+6=0
6 ni ikki tarafga qo’shing.
9x^{2}-11x+8=0
8 olish uchun 2 va 6'ni qo'shing.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 9\times 8}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -11 ni b va 8 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 9\times 8}}{2\times 9}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-36\times 8}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121-288}}{2\times 9}
-36 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{-167}}{2\times 9}
121 ni -288 ga qo'shish.
x=\frac{-\left(-11\right)±\sqrt{167}i}{2\times 9}
-167 ning kvadrat ildizini chiqarish.
x=\frac{11±\sqrt{167}i}{2\times 9}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{167}i}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{11+\sqrt{167}i}{18}
x=\frac{11±\sqrt{167}i}{18} tenglamasini yeching, bunda ± musbat. 11 ni i\sqrt{167} ga qo'shish.
x=\frac{-\sqrt{167}i+11}{18}
x=\frac{11±\sqrt{167}i}{18} tenglamasini yeching, bunda ± manfiy. 11 dan i\sqrt{167} ni ayirish.
x=\frac{11+\sqrt{167}i}{18} x=\frac{-\sqrt{167}i+11}{18}
Tenglama yechildi.
9x^{2}-6x+2-5x=-6
Ikkala tarafdan 5x ni ayirish.
9x^{2}-11x+2=-6
-11x ni olish uchun -6x va -5x ni birlashtirish.
9x^{2}-11x=-6-2
Ikkala tarafdan 2 ni ayirish.
9x^{2}-11x=-8
-8 olish uchun -6 dan 2 ni ayirish.
\frac{9x^{2}-11x}{9}=-\frac{8}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{11}{9}x=-\frac{8}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{9}x+\left(-\frac{11}{18}\right)^{2}=-\frac{8}{9}+\left(-\frac{11}{18}\right)^{2}
-\frac{11}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{18} olish uchun. Keyin, -\frac{11}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{9}x+\frac{121}{324}=-\frac{8}{9}+\frac{121}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{18} kvadratini chiqarish.
x^{2}-\frac{11}{9}x+\frac{121}{324}=-\frac{167}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{8}{9} ni \frac{121}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{18}\right)^{2}=-\frac{167}{324}
x^{2}-\frac{11}{9}x+\frac{121}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{18}\right)^{2}}=\sqrt{-\frac{167}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{18}=\frac{\sqrt{167}i}{18} x-\frac{11}{18}=-\frac{\sqrt{167}i}{18}
Qisqartirish.
x=\frac{11+\sqrt{167}i}{18} x=\frac{-\sqrt{167}i+11}{18}
\frac{11}{18} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}