Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(3x-2\right)\left(3x+2\right)=0
Hisoblang: 9x^{2}-4. 9x^{2}-4 ni \left(3x\right)^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{3} x=-\frac{2}{3}
Tenglamani yechish uchun 3x-2=0 va 3x+2=0 ni yeching.
9x^{2}=4
4 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{4}{9}
Ikki tarafini 9 ga bo‘ling.
x=\frac{2}{3} x=-\frac{2}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
9x^{2}-4=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-4\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 0 ni b va -4 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 9\left(-4\right)}}{2\times 9}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-36\left(-4\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{0±\sqrt{144}}{2\times 9}
-36 ni -4 marotabaga ko'paytirish.
x=\frac{0±12}{2\times 9}
144 ning kvadrat ildizini chiqarish.
x=\frac{0±12}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{2}{3}
x=\frac{0±12}{18} tenglamasini yeching, bunda ± musbat. \frac{12}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{2}{3}
x=\frac{0±12}{18} tenglamasini yeching, bunda ± manfiy. \frac{-12}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{2}{3} x=-\frac{2}{3}
Tenglama yechildi.