x uchun yechish
x = \frac{20}{9} = 2\frac{2}{9} \approx 2,222222222
x=25
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-245x+500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-245\right)±\sqrt{\left(-245\right)^{2}-4\times 9\times 500}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -245 ni b va 500 ni c bilan almashtiring.
x=\frac{-\left(-245\right)±\sqrt{60025-4\times 9\times 500}}{2\times 9}
-245 kvadratini chiqarish.
x=\frac{-\left(-245\right)±\sqrt{60025-36\times 500}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-245\right)±\sqrt{60025-18000}}{2\times 9}
-36 ni 500 marotabaga ko'paytirish.
x=\frac{-\left(-245\right)±\sqrt{42025}}{2\times 9}
60025 ni -18000 ga qo'shish.
x=\frac{-\left(-245\right)±205}{2\times 9}
42025 ning kvadrat ildizini chiqarish.
x=\frac{245±205}{2\times 9}
-245 ning teskarisi 245 ga teng.
x=\frac{245±205}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{450}{18}
x=\frac{245±205}{18} tenglamasini yeching, bunda ± musbat. 245 ni 205 ga qo'shish.
x=25
450 ni 18 ga bo'lish.
x=\frac{40}{18}
x=\frac{245±205}{18} tenglamasini yeching, bunda ± manfiy. 245 dan 205 ni ayirish.
x=\frac{20}{9}
\frac{40}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=25 x=\frac{20}{9}
Tenglama yechildi.
9x^{2}-245x+500=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-245x+500-500=-500
Tenglamaning ikkala tarafidan 500 ni ayirish.
9x^{2}-245x=-500
O‘zidan 500 ayirilsa 0 qoladi.
\frac{9x^{2}-245x}{9}=-\frac{500}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{245}{9}x=-\frac{500}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{245}{9}x+\left(-\frac{245}{18}\right)^{2}=-\frac{500}{9}+\left(-\frac{245}{18}\right)^{2}
-\frac{245}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{245}{18} olish uchun. Keyin, -\frac{245}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{245}{9}x+\frac{60025}{324}=-\frac{500}{9}+\frac{60025}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{245}{18} kvadratini chiqarish.
x^{2}-\frac{245}{9}x+\frac{60025}{324}=\frac{42025}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{500}{9} ni \frac{60025}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{245}{18}\right)^{2}=\frac{42025}{324}
x^{2}-\frac{245}{9}x+\frac{60025}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{245}{18}\right)^{2}}=\sqrt{\frac{42025}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{245}{18}=\frac{205}{18} x-\frac{245}{18}=-\frac{205}{18}
Qisqartirish.
x=25 x=\frac{20}{9}
\frac{245}{18} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}