Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{16}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{16}{9}=0
Ikkala tarafdan \frac{16}{9} ni ayirish.
9x^{2}-16=0
Ikkala tarafini 9 ga ko‘paytiring.
\left(3x-4\right)\left(3x+4\right)=0
Hisoblang: 9x^{2}-16. 9x^{2}-16 ni \left(3x\right)^{2}-4^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{4}{3} x=-\frac{4}{3}
Tenglamani yechish uchun 3x-4=0 va 3x+4=0 ni yeching.
x^{2}=\frac{16}{9}
Ikki tarafini 9 ga bo‘ling.
x=\frac{4}{3} x=-\frac{4}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{16}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{16}{9}=0
Ikkala tarafdan \frac{16}{9} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{16}{9} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{64}{9}}}{2}
-4 ni -\frac{16}{9} marotabaga ko'paytirish.
x=\frac{0±\frac{8}{3}}{2}
\frac{64}{9} ning kvadrat ildizini chiqarish.
x=\frac{4}{3}
x=\frac{0±\frac{8}{3}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{4}{3}
x=\frac{0±\frac{8}{3}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{4}{3} x=-\frac{4}{3}
Tenglama yechildi.