Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+48x-64=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-48±\sqrt{48^{2}-4\times 9\left(-64\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-48±\sqrt{2304-4\times 9\left(-64\right)}}{2\times 9}
48 kvadratini chiqarish.
x=\frac{-48±\sqrt{2304-36\left(-64\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-48±\sqrt{2304+2304}}{2\times 9}
-36 ni -64 marotabaga ko'paytirish.
x=\frac{-48±\sqrt{4608}}{2\times 9}
2304 ni 2304 ga qo'shish.
x=\frac{-48±48\sqrt{2}}{2\times 9}
4608 ning kvadrat ildizini chiqarish.
x=\frac{-48±48\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{48\sqrt{2}-48}{18}
x=\frac{-48±48\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. -48 ni 48\sqrt{2} ga qo'shish.
x=\frac{8\sqrt{2}-8}{3}
-48+48\sqrt{2} ni 18 ga bo'lish.
x=\frac{-48\sqrt{2}-48}{18}
x=\frac{-48±48\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. -48 dan 48\sqrt{2} ni ayirish.
x=\frac{-8\sqrt{2}-8}{3}
-48-48\sqrt{2} ni 18 ga bo'lish.
9x^{2}+48x-64=9\left(x-\frac{8\sqrt{2}-8}{3}\right)\left(x-\frac{-8\sqrt{2}-8}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-8+8\sqrt{2}}{3} ga va x_{2} uchun \frac{-8-8\sqrt{2}}{3} ga bo‘ling.