Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}=-25
Ikkala tarafdan 25 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{25}{9}
Ikki tarafini 9 ga bo‘ling.
x=\frac{5}{3}i x=-\frac{5}{3}i
Tenglama yechildi.
9x^{2}+25=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 25}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 0 ni b va 25 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 9\times 25}}{2\times 9}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-36\times 25}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-900}}{2\times 9}
-36 ni 25 marotabaga ko'paytirish.
x=\frac{0±30i}{2\times 9}
-900 ning kvadrat ildizini chiqarish.
x=\frac{0±30i}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{5}{3}i
x=\frac{0±30i}{18} tenglamasini yeching, bunda ± musbat.
x=-\frac{5}{3}i
x=\frac{0±30i}{18} tenglamasini yeching, bunda ± manfiy.
x=\frac{5}{3}i x=-\frac{5}{3}i
Tenglama yechildi.