Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+150x-119=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-150±\sqrt{150^{2}-4\times 9\left(-119\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 150 ni b va -119 ni c bilan almashtiring.
x=\frac{-150±\sqrt{22500-4\times 9\left(-119\right)}}{2\times 9}
150 kvadratini chiqarish.
x=\frac{-150±\sqrt{22500-36\left(-119\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-150±\sqrt{22500+4284}}{2\times 9}
-36 ni -119 marotabaga ko'paytirish.
x=\frac{-150±\sqrt{26784}}{2\times 9}
22500 ni 4284 ga qo'shish.
x=\frac{-150±12\sqrt{186}}{2\times 9}
26784 ning kvadrat ildizini chiqarish.
x=\frac{-150±12\sqrt{186}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{12\sqrt{186}-150}{18}
x=\frac{-150±12\sqrt{186}}{18} tenglamasini yeching, bunda ± musbat. -150 ni 12\sqrt{186} ga qo'shish.
x=\frac{2\sqrt{186}-25}{3}
-150+12\sqrt{186} ni 18 ga bo'lish.
x=\frac{-12\sqrt{186}-150}{18}
x=\frac{-150±12\sqrt{186}}{18} tenglamasini yeching, bunda ± manfiy. -150 dan 12\sqrt{186} ni ayirish.
x=\frac{-2\sqrt{186}-25}{3}
-150-12\sqrt{186} ni 18 ga bo'lish.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
Tenglama yechildi.
9x^{2}+150x-119=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}+150x-119-\left(-119\right)=-\left(-119\right)
119 ni tenglamaning ikkala tarafiga qo'shish.
9x^{2}+150x=-\left(-119\right)
O‘zidan -119 ayirilsa 0 qoladi.
9x^{2}+150x=119
0 dan -119 ni ayirish.
\frac{9x^{2}+150x}{9}=\frac{119}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{150}{9}x=\frac{119}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{50}{3}x=\frac{119}{9}
\frac{150}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{50}{3}x+\left(\frac{25}{3}\right)^{2}=\frac{119}{9}+\left(\frac{25}{3}\right)^{2}
\frac{50}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{25}{3} olish uchun. Keyin, \frac{25}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{119+625}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{25}{3} kvadratini chiqarish.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{248}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{119}{9} ni \frac{625}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{25}{3}\right)^{2}=\frac{248}{3}
x^{2}+\frac{50}{3}x+\frac{625}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{25}{3}\right)^{2}}=\sqrt{\frac{248}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{25}{3}=\frac{2\sqrt{186}}{3} x+\frac{25}{3}=-\frac{2\sqrt{186}}{3}
Qisqartirish.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
Tenglamaning ikkala tarafidan \frac{25}{3} ni ayirish.