Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

81+2x^{2}=5x
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
81+2x^{2}-5x=0
Ikkala tarafdan 5x ni ayirish.
2x^{2}-5x+81=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 81}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -5 ni b va 81 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 81}}{2\times 2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-8\times 81}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25-648}}{2\times 2}
-8 ni 81 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-623}}{2\times 2}
25 ni -648 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{623}i}{2\times 2}
-623 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{623}i}{2\times 2}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{623}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{5+\sqrt{623}i}{4}
x=\frac{5±\sqrt{623}i}{4} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{623} ga qo'shish.
x=\frac{-\sqrt{623}i+5}{4}
x=\frac{5±\sqrt{623}i}{4} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{623} ni ayirish.
x=\frac{5+\sqrt{623}i}{4} x=\frac{-\sqrt{623}i+5}{4}
Tenglama yechildi.
81+2x^{2}=5x
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
81+2x^{2}-5x=0
Ikkala tarafdan 5x ni ayirish.
2x^{2}-5x=-81
Ikkala tarafdan 81 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2x^{2}-5x}{2}=-\frac{81}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{5}{2}x=-\frac{81}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{81}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{4} olish uchun. Keyin, -\frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{81}{2}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{4} kvadratini chiqarish.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{623}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{81}{2} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{4}\right)^{2}=-\frac{623}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{623}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{4}=\frac{\sqrt{623}i}{4} x-\frac{5}{4}=-\frac{\sqrt{623}i}{4}
Qisqartirish.
x=\frac{5+\sqrt{623}i}{4} x=\frac{-\sqrt{623}i+5}{4}
\frac{5}{4} ni tenglamaning ikkala tarafiga qo'shish.