Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

27n^{2}=n-4+2
n qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3n^{2} ga ko'paytirish.
27n^{2}=n-2
-2 olish uchun -4 va 2'ni qo'shing.
27n^{2}-n=-2
Ikkala tarafdan n ni ayirish.
27n^{2}-n+2=0
2 ni ikki tarafga qo’shing.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 27\times 2}}{2\times 27}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 27 ni a, -1 ni b va 2 ni c bilan almashtiring.
n=\frac{-\left(-1\right)±\sqrt{1-108\times 2}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{1-216}}{2\times 27}
-108 ni 2 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{-215}}{2\times 27}
1 ni -216 ga qo'shish.
n=\frac{-\left(-1\right)±\sqrt{215}i}{2\times 27}
-215 ning kvadrat ildizini chiqarish.
n=\frac{1±\sqrt{215}i}{2\times 27}
-1 ning teskarisi 1 ga teng.
n=\frac{1±\sqrt{215}i}{54}
2 ni 27 marotabaga ko'paytirish.
n=\frac{1+\sqrt{215}i}{54}
n=\frac{1±\sqrt{215}i}{54} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{215} ga qo'shish.
n=\frac{-\sqrt{215}i+1}{54}
n=\frac{1±\sqrt{215}i}{54} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{215} ni ayirish.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
Tenglama yechildi.
27n^{2}=n-4+2
n qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3n^{2} ga ko'paytirish.
27n^{2}=n-2
-2 olish uchun -4 va 2'ni qo'shing.
27n^{2}-n=-2
Ikkala tarafdan n ni ayirish.
\frac{27n^{2}-n}{27}=-\frac{2}{27}
Ikki tarafini 27 ga bo‘ling.
n^{2}-\frac{1}{27}n=-\frac{2}{27}
27 ga bo'lish 27 ga ko'paytirishni bekor qiladi.
n^{2}-\frac{1}{27}n+\left(-\frac{1}{54}\right)^{2}=-\frac{2}{27}+\left(-\frac{1}{54}\right)^{2}
-\frac{1}{27} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{54} olish uchun. Keyin, -\frac{1}{54} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{2}{27}+\frac{1}{2916}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{54} kvadratini chiqarish.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{215}{2916}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{27} ni \frac{1}{2916} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{1}{54}\right)^{2}=-\frac{215}{2916}
n^{2}-\frac{1}{27}n+\frac{1}{2916} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{1}{54}\right)^{2}}=\sqrt{-\frac{215}{2916}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{1}{54}=\frac{\sqrt{215}i}{54} n-\frac{1}{54}=-\frac{\sqrt{215}i}{54}
Qisqartirish.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
\frac{1}{54} ni tenglamaning ikkala tarafiga qo'shish.