x uchun yechish
x = \frac{\sqrt{91} + 1}{3} \approx 3,513130671
x=\frac{1-\sqrt{91}}{3}\approx -2,846464005
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{2}x^{2}-x=15
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\frac{3}{2}x^{2}-x-15=15-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
\frac{3}{2}x^{2}-x-15=0
O‘zidan 15 ayirilsa 0 qoladi.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{2}\left(-15\right)}}{2\times \frac{3}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{3}{2} ni a, -1 ni b va -15 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-6\left(-15\right)}}{2\times \frac{3}{2}}
-4 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+90}}{2\times \frac{3}{2}}
-6 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{91}}{2\times \frac{3}{2}}
1 ni 90 ga qo'shish.
x=\frac{1±\sqrt{91}}{2\times \frac{3}{2}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{91}}{3}
2 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{91}+1}{3}
x=\frac{1±\sqrt{91}}{3} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{91} ga qo'shish.
x=\frac{1-\sqrt{91}}{3}
x=\frac{1±\sqrt{91}}{3} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{91} ni ayirish.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
Tenglama yechildi.
\frac{3}{2}x^{2}-x=15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{15}{\frac{3}{2}}
Tenglamaning ikki tarafini \frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{15}{\frac{3}{2}}
\frac{3}{2} ga bo'lish \frac{3}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=\frac{15}{\frac{3}{2}}
-1 ni \frac{3}{2} ga bo'lish -1 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x=10
15 ni \frac{3}{2} ga bo'lish 15 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=10+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=10+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{91}{9}
10 ni \frac{1}{9} ga qo'shish.
\left(x-\frac{1}{3}\right)^{2}=\frac{91}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{91}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{91}}{3} x-\frac{1}{3}=-\frac{\sqrt{91}}{3}
Qisqartirish.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}