Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3}{2}x^{2}-x=15
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\frac{3}{2}x^{2}-x-15=15-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
\frac{3}{2}x^{2}-x-15=0
O‘zidan 15 ayirilsa 0 qoladi.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{2}\left(-15\right)}}{2\times \frac{3}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{3}{2} ni a, -1 ni b va -15 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-6\left(-15\right)}}{2\times \frac{3}{2}}
-4 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+90}}{2\times \frac{3}{2}}
-6 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{91}}{2\times \frac{3}{2}}
1 ni 90 ga qo'shish.
x=\frac{1±\sqrt{91}}{2\times \frac{3}{2}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{91}}{3}
2 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{91}+1}{3}
x=\frac{1±\sqrt{91}}{3} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{91} ga qo'shish.
x=\frac{1-\sqrt{91}}{3}
x=\frac{1±\sqrt{91}}{3} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{91} ni ayirish.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
Tenglama yechildi.
\frac{3}{2}x^{2}-x=15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{15}{\frac{3}{2}}
Tenglamaning ikki tarafini \frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{15}{\frac{3}{2}}
\frac{3}{2} ga bo'lish \frac{3}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=\frac{15}{\frac{3}{2}}
-1 ni \frac{3}{2} ga bo'lish -1 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x=10
15 ni \frac{3}{2} ga bo'lish 15 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=10+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=10+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{91}{9}
10 ni \frac{1}{9} ga qo'shish.
\left(x-\frac{1}{3}\right)^{2}=\frac{91}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{91}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{91}}{3} x-\frac{1}{3}=-\frac{\sqrt{91}}{3}
Qisqartirish.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.