Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9+x^{2}=4x^{2}+4x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
9+x^{2}-4x^{2}=4x+1
Ikkala tarafdan 4x^{2} ni ayirish.
9-3x^{2}=4x+1
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
9-3x^{2}-4x=1
Ikkala tarafdan 4x ni ayirish.
9-3x^{2}-4x-1=0
Ikkala tarafdan 1 ni ayirish.
8-3x^{2}-4x=0
8 olish uchun 9 dan 1 ni ayirish.
-3x^{2}-4x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -4 ni b va 8 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 8}}{2\left(-3\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+12\times 8}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\left(-3\right)}
12 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\left(-3\right)}
16 ni 96 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\left(-3\right)}
112 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{7}}{2\left(-3\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4\sqrt{7}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{4\sqrt{7}+4}{-6}
x=\frac{4±4\sqrt{7}}{-6} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{7} ga qo'shish.
x=\frac{-2\sqrt{7}-2}{3}
4+4\sqrt{7} ni -6 ga bo'lish.
x=\frac{4-4\sqrt{7}}{-6}
x=\frac{4±4\sqrt{7}}{-6} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{7} ni ayirish.
x=\frac{2\sqrt{7}-2}{3}
4-4\sqrt{7} ni -6 ga bo'lish.
x=\frac{-2\sqrt{7}-2}{3} x=\frac{2\sqrt{7}-2}{3}
Tenglama yechildi.
9+x^{2}=4x^{2}+4x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+1\right)^{2} kengaytirilishi uchun ishlating.
9+x^{2}-4x^{2}=4x+1
Ikkala tarafdan 4x^{2} ni ayirish.
9-3x^{2}=4x+1
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
9-3x^{2}-4x=1
Ikkala tarafdan 4x ni ayirish.
-3x^{2}-4x=1-9
Ikkala tarafdan 9 ni ayirish.
-3x^{2}-4x=-8
-8 olish uchun 1 dan 9 ni ayirish.
\frac{-3x^{2}-4x}{-3}=-\frac{8}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{8}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{3}x=-\frac{8}{-3}
-4 ni -3 ga bo'lish.
x^{2}+\frac{4}{3}x=\frac{8}{3}
-8 ni -3 ga bo'lish.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{8}{3}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{8}{3}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{28}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{2}{3}\right)^{2}=\frac{28}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{3}=\frac{2\sqrt{7}}{3} x+\frac{2}{3}=-\frac{2\sqrt{7}}{3}
Qisqartirish.
x=\frac{2\sqrt{7}-2}{3} x=\frac{-2\sqrt{7}-2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.