Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x-\left(x^{2}+3x\right)=2
x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-x^{2}-3x=2
x^{2}+3x teskarisini topish uchun har birining teskarisini toping.
5x-x^{2}=2
5x ni olish uchun 8x va -3x ni birlashtirish.
5x-x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-x^{2}+5x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 5 ni b va -2 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25+4\left(-2\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-8}}{2\left(-1\right)}
4 ni -2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{17}}{2\left(-1\right)}
25 ni -8 ga qo'shish.
x=\frac{-5±\sqrt{17}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{17}-5}{-2}
x=\frac{-5±\sqrt{17}}{-2} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{17} ga qo'shish.
x=\frac{5-\sqrt{17}}{2}
-5+\sqrt{17} ni -2 ga bo'lish.
x=\frac{-\sqrt{17}-5}{-2}
x=\frac{-5±\sqrt{17}}{-2} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{17} ni ayirish.
x=\frac{\sqrt{17}+5}{2}
-5-\sqrt{17} ni -2 ga bo'lish.
x=\frac{5-\sqrt{17}}{2} x=\frac{\sqrt{17}+5}{2}
Tenglama yechildi.
8x-\left(x^{2}+3x\right)=2
x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-x^{2}-3x=2
x^{2}+3x teskarisini topish uchun har birining teskarisini toping.
5x-x^{2}=2
5x ni olish uchun 8x va -3x ni birlashtirish.
-x^{2}+5x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=\frac{2}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{5}{-1}x=\frac{2}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{2}{-1}
5 ni -1 ga bo'lish.
x^{2}-5x=-2
2 ni -1 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-2+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-2+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{17}{4}
-2 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=\frac{17}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{17}}{2} x-\frac{5}{2}=-\frac{\sqrt{17}}{2}
Qisqartirish.
x=\frac{\sqrt{17}+5}{2} x=\frac{5-\sqrt{17}}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.