x uchun yechish (complex solution)
x=\frac{\sqrt{194}i}{22}+\frac{1}{11}\approx 0,090909091+0,633108558i
x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}\approx 0,090909091-0,633108558i
Grafik
Baham ko'rish
Klipbordga nusxa olish
88x^{2}-16x=-36
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
88x^{2}-16x-\left(-36\right)=-36-\left(-36\right)
36 ni tenglamaning ikkala tarafiga qo'shish.
88x^{2}-16x-\left(-36\right)=0
O‘zidan -36 ayirilsa 0 qoladi.
88x^{2}-16x+36=0
0 dan -36 ni ayirish.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 88\times 36}}{2\times 88}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 88 ni a, -16 ni b va 36 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 88\times 36}}{2\times 88}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256-352\times 36}}{2\times 88}
-4 ni 88 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{256-12672}}{2\times 88}
-352 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{-12416}}{2\times 88}
256 ni -12672 ga qo'shish.
x=\frac{-\left(-16\right)±8\sqrt{194}i}{2\times 88}
-12416 ning kvadrat ildizini chiqarish.
x=\frac{16±8\sqrt{194}i}{2\times 88}
-16 ning teskarisi 16 ga teng.
x=\frac{16±8\sqrt{194}i}{176}
2 ni 88 marotabaga ko'paytirish.
x=\frac{16+8\sqrt{194}i}{176}
x=\frac{16±8\sqrt{194}i}{176} tenglamasini yeching, bunda ± musbat. 16 ni 8i\sqrt{194} ga qo'shish.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11}
16+8i\sqrt{194} ni 176 ga bo'lish.
x=\frac{-8\sqrt{194}i+16}{176}
x=\frac{16±8\sqrt{194}i}{176} tenglamasini yeching, bunda ± manfiy. 16 dan 8i\sqrt{194} ni ayirish.
x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
16-8i\sqrt{194} ni 176 ga bo'lish.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
Tenglama yechildi.
88x^{2}-16x=-36
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{88x^{2}-16x}{88}=-\frac{36}{88}
Ikki tarafini 88 ga bo‘ling.
x^{2}+\left(-\frac{16}{88}\right)x=-\frac{36}{88}
88 ga bo'lish 88 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{11}x=-\frac{36}{88}
\frac{-16}{88} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{11}x=-\frac{9}{22}
\frac{-36}{88} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{11}x+\left(-\frac{1}{11}\right)^{2}=-\frac{9}{22}+\left(-\frac{1}{11}\right)^{2}
-\frac{2}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{11} olish uchun. Keyin, -\frac{1}{11} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{9}{22}+\frac{1}{121}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{11} kvadratini chiqarish.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{97}{242}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{22} ni \frac{1}{121} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{11}\right)^{2}=-\frac{97}{242}
x^{2}-\frac{2}{11}x+\frac{1}{121} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{11}\right)^{2}}=\sqrt{-\frac{97}{242}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{11}=\frac{\sqrt{194}i}{22} x-\frac{1}{11}=-\frac{\sqrt{194}i}{22}
Qisqartirish.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
\frac{1}{11} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}