x uchun yechish (complex solution)
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}\approx -0,041239305+0,184427778i
x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}\approx -0,041239305-0,184427778i
Grafik
Baham ko'rish
Klipbordga nusxa olish
84x^{2}+4\sqrt{3}x+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4\sqrt{3}±\sqrt{\left(4\sqrt{3}\right)^{2}-4\times 84\times 3}}{2\times 84}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 84 ni a, 4\sqrt{3} ni b va 3 ni c bilan almashtiring.
x=\frac{-4\sqrt{3}±\sqrt{48-4\times 84\times 3}}{2\times 84}
4\sqrt{3} kvadratini chiqarish.
x=\frac{-4\sqrt{3}±\sqrt{48-336\times 3}}{2\times 84}
-4 ni 84 marotabaga ko'paytirish.
x=\frac{-4\sqrt{3}±\sqrt{48-1008}}{2\times 84}
-336 ni 3 marotabaga ko'paytirish.
x=\frac{-4\sqrt{3}±\sqrt{-960}}{2\times 84}
48 ni -1008 ga qo'shish.
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{2\times 84}
-960 ning kvadrat ildizini chiqarish.
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168}
2 ni 84 marotabaga ko'paytirish.
x=\frac{-4\sqrt{3}+8\sqrt{15}i}{168}
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168} tenglamasini yeching, bunda ± musbat. -4\sqrt{3} ni 8i\sqrt{15} ga qo'shish.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
-4\sqrt{3}+8i\sqrt{15} ni 168 ga bo'lish.
x=\frac{-8\sqrt{15}i-4\sqrt{3}}{168}
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168} tenglamasini yeching, bunda ± manfiy. -4\sqrt{3} dan 8i\sqrt{15} ni ayirish.
x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
-4\sqrt{3}-8i\sqrt{15} ni 168 ga bo'lish.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42} x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
Tenglama yechildi.
84x^{2}+4\sqrt{3}x+3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
84x^{2}+4\sqrt{3}x+3-3=-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
84x^{2}+4\sqrt{3}x=-3
O‘zidan 3 ayirilsa 0 qoladi.
\frac{84x^{2}+4\sqrt{3}x}{84}=-\frac{3}{84}
Ikki tarafini 84 ga bo‘ling.
x^{2}+\frac{4\sqrt{3}}{84}x=-\frac{3}{84}
84 ga bo'lish 84 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{\sqrt{3}}{21}x=-\frac{3}{84}
4\sqrt{3} ni 84 ga bo'lish.
x^{2}+\frac{\sqrt{3}}{21}x=-\frac{1}{28}
\frac{-3}{84} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{\sqrt{3}}{21}x+\left(\frac{\sqrt{3}}{42}\right)^{2}=-\frac{1}{28}+\left(\frac{\sqrt{3}}{42}\right)^{2}
\frac{\sqrt{3}}{21} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{\sqrt{3}}{42} olish uchun. Keyin, \frac{\sqrt{3}}{42} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588}=-\frac{1}{28}+\frac{1}{588}
\frac{\sqrt{3}}{42} kvadratini chiqarish.
x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588}=-\frac{5}{147}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{28} ni \frac{1}{588} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{\sqrt{3}}{42}\right)^{2}=-\frac{5}{147}
x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{\sqrt{3}}{42}\right)^{2}}=\sqrt{-\frac{5}{147}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{\sqrt{3}}{42}=\frac{\sqrt{15}i}{21} x+\frac{\sqrt{3}}{42}=-\frac{\sqrt{15}i}{21}
Qisqartirish.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42} x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
Tenglamaning ikkala tarafidan \frac{\sqrt{3}}{42} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}