x uchun yechish
x=\frac{5}{9}\approx 0,555555556
x=-\frac{5}{9}\approx -0,555555556
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}=\frac{25}{81}
Ikki tarafini 81 ga bo‘ling.
x^{2}-\frac{25}{81}=0
Ikkala tarafdan \frac{25}{81} ni ayirish.
81x^{2}-25=0
Ikkala tarafini 81 ga ko‘paytiring.
\left(9x-5\right)\left(9x+5\right)=0
Hisoblang: 81x^{2}-25. 81x^{2}-25 ni \left(9x\right)^{2}-5^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{9} x=-\frac{5}{9}
Tenglamani yechish uchun 9x-5=0 va 9x+5=0 ni yeching.
x^{2}=\frac{25}{81}
Ikki tarafini 81 ga bo‘ling.
x=\frac{5}{9} x=-\frac{5}{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{25}{81}
Ikki tarafini 81 ga bo‘ling.
x^{2}-\frac{25}{81}=0
Ikkala tarafdan \frac{25}{81} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{81}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{25}{81} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{25}{81}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{100}{81}}}{2}
-4 ni -\frac{25}{81} marotabaga ko'paytirish.
x=\frac{0±\frac{10}{9}}{2}
\frac{100}{81} ning kvadrat ildizini chiqarish.
x=\frac{5}{9}
x=\frac{0±\frac{10}{9}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{5}{9}
x=\frac{0±\frac{10}{9}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{5}{9} x=-\frac{5}{9}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}