Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

800x+4500x+500x^{2}=6000
500x ga 9+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5300x+500x^{2}=6000
5300x ni olish uchun 800x va 4500x ni birlashtirish.
5300x+500x^{2}-6000=0
Ikkala tarafdan 6000 ni ayirish.
500x^{2}+5300x-6000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5300±\sqrt{5300^{2}-4\times 500\left(-6000\right)}}{2\times 500}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 500 ni a, 5300 ni b va -6000 ni c bilan almashtiring.
x=\frac{-5300±\sqrt{28090000-4\times 500\left(-6000\right)}}{2\times 500}
5300 kvadratini chiqarish.
x=\frac{-5300±\sqrt{28090000-2000\left(-6000\right)}}{2\times 500}
-4 ni 500 marotabaga ko'paytirish.
x=\frac{-5300±\sqrt{28090000+12000000}}{2\times 500}
-2000 ni -6000 marotabaga ko'paytirish.
x=\frac{-5300±\sqrt{40090000}}{2\times 500}
28090000 ni 12000000 ga qo'shish.
x=\frac{-5300±100\sqrt{4009}}{2\times 500}
40090000 ning kvadrat ildizini chiqarish.
x=\frac{-5300±100\sqrt{4009}}{1000}
2 ni 500 marotabaga ko'paytirish.
x=\frac{100\sqrt{4009}-5300}{1000}
x=\frac{-5300±100\sqrt{4009}}{1000} tenglamasini yeching, bunda ± musbat. -5300 ni 100\sqrt{4009} ga qo'shish.
x=\frac{\sqrt{4009}-53}{10}
-5300+100\sqrt{4009} ni 1000 ga bo'lish.
x=\frac{-100\sqrt{4009}-5300}{1000}
x=\frac{-5300±100\sqrt{4009}}{1000} tenglamasini yeching, bunda ± manfiy. -5300 dan 100\sqrt{4009} ni ayirish.
x=\frac{-\sqrt{4009}-53}{10}
-5300-100\sqrt{4009} ni 1000 ga bo'lish.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
Tenglama yechildi.
800x+4500x+500x^{2}=6000
500x ga 9+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5300x+500x^{2}=6000
5300x ni olish uchun 800x va 4500x ni birlashtirish.
500x^{2}+5300x=6000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{500x^{2}+5300x}{500}=\frac{6000}{500}
Ikki tarafini 500 ga bo‘ling.
x^{2}+\frac{5300}{500}x=\frac{6000}{500}
500 ga bo'lish 500 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{53}{5}x=\frac{6000}{500}
\frac{5300}{500} ulushini 100 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{53}{5}x=12
6000 ni 500 ga bo'lish.
x^{2}+\frac{53}{5}x+\left(\frac{53}{10}\right)^{2}=12+\left(\frac{53}{10}\right)^{2}
\frac{53}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{53}{10} olish uchun. Keyin, \frac{53}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=12+\frac{2809}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{53}{10} kvadratini chiqarish.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=\frac{4009}{100}
12 ni \frac{2809}{100} ga qo'shish.
\left(x+\frac{53}{10}\right)^{2}=\frac{4009}{100}
x^{2}+\frac{53}{5}x+\frac{2809}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{53}{10}\right)^{2}}=\sqrt{\frac{4009}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{53}{10}=\frac{\sqrt{4009}}{10} x+\frac{53}{10}=-\frac{\sqrt{4009}}{10}
Qisqartirish.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
Tenglamaning ikkala tarafidan \frac{53}{10} ni ayirish.