Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-b^{2}+80b=1500
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-b^{2}+80b-1500=1500-1500
Tenglamaning ikkala tarafidan 1500 ni ayirish.
-b^{2}+80b-1500=0
O‘zidan 1500 ayirilsa 0 qoladi.
b=\frac{-80±\sqrt{80^{2}-4\left(-1\right)\left(-1500\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 80 ni b va -1500 ni c bilan almashtiring.
b=\frac{-80±\sqrt{6400-4\left(-1\right)\left(-1500\right)}}{2\left(-1\right)}
80 kvadratini chiqarish.
b=\frac{-80±\sqrt{6400+4\left(-1500\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
b=\frac{-80±\sqrt{6400-6000}}{2\left(-1\right)}
4 ni -1500 marotabaga ko'paytirish.
b=\frac{-80±\sqrt{400}}{2\left(-1\right)}
6400 ni -6000 ga qo'shish.
b=\frac{-80±20}{2\left(-1\right)}
400 ning kvadrat ildizini chiqarish.
b=\frac{-80±20}{-2}
2 ni -1 marotabaga ko'paytirish.
b=-\frac{60}{-2}
b=\frac{-80±20}{-2} tenglamasini yeching, bunda ± musbat. -80 ni 20 ga qo'shish.
b=30
-60 ni -2 ga bo'lish.
b=-\frac{100}{-2}
b=\frac{-80±20}{-2} tenglamasini yeching, bunda ± manfiy. -80 dan 20 ni ayirish.
b=50
-100 ni -2 ga bo'lish.
b=30 b=50
Tenglama yechildi.
-b^{2}+80b=1500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-b^{2}+80b}{-1}=\frac{1500}{-1}
Ikki tarafini -1 ga bo‘ling.
b^{2}+\frac{80}{-1}b=\frac{1500}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
b^{2}-80b=\frac{1500}{-1}
80 ni -1 ga bo'lish.
b^{2}-80b=-1500
1500 ni -1 ga bo'lish.
b^{2}-80b+\left(-40\right)^{2}=-1500+\left(-40\right)^{2}
-80 ni bo‘lish, x shartining koeffitsienti, 2 ga -40 olish uchun. Keyin, -40 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}-80b+1600=-1500+1600
-40 kvadratini chiqarish.
b^{2}-80b+1600=100
-1500 ni 1600 ga qo'shish.
\left(b-40\right)^{2}=100
b^{2}-80b+1600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b-40\right)^{2}}=\sqrt{100}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b-40=10 b-40=-10
Qisqartirish.
b=50 b=30
40 ni tenglamaning ikkala tarafiga qo'shish.