Omil
8\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)
Baholash
8y^{2}+80y+20
Grafik
Baham ko'rish
Klipbordga nusxa olish
8y^{2}+80y+20=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-80±\sqrt{80^{2}-4\times 8\times 20}}{2\times 8}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-80±\sqrt{6400-4\times 8\times 20}}{2\times 8}
80 kvadratini chiqarish.
y=\frac{-80±\sqrt{6400-32\times 20}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
y=\frac{-80±\sqrt{6400-640}}{2\times 8}
-32 ni 20 marotabaga ko'paytirish.
y=\frac{-80±\sqrt{5760}}{2\times 8}
6400 ni -640 ga qo'shish.
y=\frac{-80±24\sqrt{10}}{2\times 8}
5760 ning kvadrat ildizini chiqarish.
y=\frac{-80±24\sqrt{10}}{16}
2 ni 8 marotabaga ko'paytirish.
y=\frac{24\sqrt{10}-80}{16}
y=\frac{-80±24\sqrt{10}}{16} tenglamasini yeching, bunda ± musbat. -80 ni 24\sqrt{10} ga qo'shish.
y=\frac{3\sqrt{10}}{2}-5
-80+24\sqrt{10} ni 16 ga bo'lish.
y=\frac{-24\sqrt{10}-80}{16}
y=\frac{-80±24\sqrt{10}}{16} tenglamasini yeching, bunda ± manfiy. -80 dan 24\sqrt{10} ni ayirish.
y=-\frac{3\sqrt{10}}{2}-5
-80-24\sqrt{10} ni 16 ga bo'lish.
8y^{2}+80y+20=8\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -5+\frac{3\sqrt{10}}{2} ga va x_{2} uchun -5-\frac{3\sqrt{10}}{2} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}