x uchun yechish
x = \frac{1591}{40} = 39\frac{31}{40} = 39,775
Grafik
Baham ko'rish
Klipbordga nusxa olish
80-x=\sqrt{36+x^{2}}
Tenglamaning ikkala tarafidan x ni ayirish.
\left(80-x\right)^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
6400-160x+x^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(80-x\right)^{2} kengaytirilishi uchun ishlating.
6400-160x+x^{2}=36+x^{2}
2 daraja ko‘rsatkichini \sqrt{36+x^{2}} ga hisoblang va 36+x^{2} ni qiymatni oling.
6400-160x+x^{2}-x^{2}=36
Ikkala tarafdan x^{2} ni ayirish.
6400-160x=36
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-160x=36-6400
Ikkala tarafdan 6400 ni ayirish.
-160x=-6364
-6364 olish uchun 36 dan 6400 ni ayirish.
x=\frac{-6364}{-160}
Ikki tarafini -160 ga bo‘ling.
x=\frac{1591}{40}
\frac{-6364}{-160} ulushini -4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
80=\frac{1591}{40}+\sqrt{36+\left(\frac{1591}{40}\right)^{2}}
80=x+\sqrt{36+x^{2}} tenglamasida x uchun \frac{1591}{40} ni almashtiring.
80=80
Qisqartirish. x=\frac{1591}{40} tenglamani qoniqtiradi.
x=\frac{1591}{40}
80-x=\sqrt{x^{2}+36} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}