Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

80-x=\sqrt{36+x^{2}}
Tenglamaning ikkala tarafidan x ni ayirish.
\left(80-x\right)^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
6400-160x+x^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(80-x\right)^{2} kengaytirilishi uchun ishlating.
6400-160x+x^{2}=36+x^{2}
2 daraja ko‘rsatkichini \sqrt{36+x^{2}} ga hisoblang va 36+x^{2} ni qiymatni oling.
6400-160x+x^{2}-x^{2}=36
Ikkala tarafdan x^{2} ni ayirish.
6400-160x=36
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-160x=36-6400
Ikkala tarafdan 6400 ni ayirish.
-160x=-6364
-6364 olish uchun 36 dan 6400 ni ayirish.
x=\frac{-6364}{-160}
Ikki tarafini -160 ga bo‘ling.
x=\frac{1591}{40}
\frac{-6364}{-160} ulushini -4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
80=\frac{1591}{40}+\sqrt{36+\left(\frac{1591}{40}\right)^{2}}
80=x+\sqrt{36+x^{2}} tenglamasida x uchun \frac{1591}{40} ni almashtiring.
80=80
Qisqartirish. x=\frac{1591}{40} tenglamani qoniqtiradi.
x=\frac{1591}{40}
80-x=\sqrt{x^{2}+36} tenglamasi noyob yechimga ega.