x uchun yechish
x = \frac{\sqrt{5761} + 1}{16} \approx 4,806328227
x=\frac{1-\sqrt{5761}}{16}\approx -4,681328227
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x^{2}-x-180=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 8\left(-180\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -1 ni b va -180 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-32\left(-180\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+5760}}{2\times 8}
-32 ni -180 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{5761}}{2\times 8}
1 ni 5760 ga qo'shish.
x=\frac{1±\sqrt{5761}}{2\times 8}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{5761}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{\sqrt{5761}+1}{16}
x=\frac{1±\sqrt{5761}}{16} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{5761} ga qo'shish.
x=\frac{1-\sqrt{5761}}{16}
x=\frac{1±\sqrt{5761}}{16} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{5761} ni ayirish.
x=\frac{\sqrt{5761}+1}{16} x=\frac{1-\sqrt{5761}}{16}
Tenglama yechildi.
8x^{2}-x-180=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8x^{2}-x-180-\left(-180\right)=-\left(-180\right)
180 ni tenglamaning ikkala tarafiga qo'shish.
8x^{2}-x=-\left(-180\right)
O‘zidan -180 ayirilsa 0 qoladi.
8x^{2}-x=180
0 dan -180 ni ayirish.
\frac{8x^{2}-x}{8}=\frac{180}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}-\frac{1}{8}x=\frac{180}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{8}x=\frac{45}{2}
\frac{180}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{8}x+\left(-\frac{1}{16}\right)^{2}=\frac{45}{2}+\left(-\frac{1}{16}\right)^{2}
-\frac{1}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{16} olish uchun. Keyin, -\frac{1}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{45}{2}+\frac{1}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{16} kvadratini chiqarish.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{5761}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{45}{2} ni \frac{1}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{16}\right)^{2}=\frac{5761}{256}
x^{2}-\frac{1}{8}x+\frac{1}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{16}\right)^{2}}=\sqrt{\frac{5761}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{16}=\frac{\sqrt{5761}}{16} x-\frac{1}{16}=-\frac{\sqrt{5761}}{16}
Qisqartirish.
x=\frac{\sqrt{5761}+1}{16} x=\frac{1-\sqrt{5761}}{16}
\frac{1}{16} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}