Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}-6x-4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-4\right)}}{2\times 8}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-4\right)}}{2\times 8}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-4\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+128}}{2\times 8}
-32 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{164}}{2\times 8}
36 ni 128 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{41}}{2\times 8}
164 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{41}}{2\times 8}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{41}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{2\sqrt{41}+6}{16}
x=\frac{6±2\sqrt{41}}{16} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{41} ga qo'shish.
x=\frac{\sqrt{41}+3}{8}
6+2\sqrt{41} ni 16 ga bo'lish.
x=\frac{6-2\sqrt{41}}{16}
x=\frac{6±2\sqrt{41}}{16} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{41} ni ayirish.
x=\frac{3-\sqrt{41}}{8}
6-2\sqrt{41} ni 16 ga bo'lish.
8x^{2}-6x-4=8\left(x-\frac{\sqrt{41}+3}{8}\right)\left(x-\frac{3-\sqrt{41}}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3+\sqrt{41}}{8} ga va x_{2} uchun \frac{3-\sqrt{41}}{8} ga bo‘ling.