Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}-5x+87-7x^{2}=5x
Ikkala tarafdan 7x^{2} ni ayirish.
x^{2}-5x+87=5x
x^{2} ni olish uchun 8x^{2} va -7x^{2} ni birlashtirish.
x^{2}-5x+87-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-10x+87=0
-10x ni olish uchun -5x va -5x ni birlashtirish.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 87}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 87 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 87}}{2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-348}}{2}
-4 ni 87 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{-248}}{2}
100 ni -348 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{62}i}{2}
-248 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{62}i}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{10+2\sqrt{62}i}{2}
x=\frac{10±2\sqrt{62}i}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2i\sqrt{62} ga qo'shish.
x=5+\sqrt{62}i
10+2i\sqrt{62} ni 2 ga bo'lish.
x=\frac{-2\sqrt{62}i+10}{2}
x=\frac{10±2\sqrt{62}i}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 2i\sqrt{62} ni ayirish.
x=-\sqrt{62}i+5
10-2i\sqrt{62} ni 2 ga bo'lish.
x=5+\sqrt{62}i x=-\sqrt{62}i+5
Tenglama yechildi.
8x^{2}-5x+87-7x^{2}=5x
Ikkala tarafdan 7x^{2} ni ayirish.
x^{2}-5x+87=5x
x^{2} ni olish uchun 8x^{2} va -7x^{2} ni birlashtirish.
x^{2}-5x+87-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-10x+87=0
-10x ni olish uchun -5x va -5x ni birlashtirish.
x^{2}-10x=-87
Ikkala tarafdan 87 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-10x+\left(-5\right)^{2}=-87+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-87+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-62
-87 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-62
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-62}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{62}i x-5=-\sqrt{62}i
Qisqartirish.
x=5+\sqrt{62}i x=-\sqrt{62}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.