x uchun yechish (complex solution)
x=-\frac{\sqrt{195}i}{2}\approx -0-6,982120022i
x=\frac{\sqrt{195}i}{2}\approx 6,982120022i
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x^{2}=15\left(-26\right)
-26 olish uchun 18 dan 44 ni ayirish.
8x^{2}=-390
-390 hosil qilish uchun 15 va -26 ni ko'paytirish.
x^{2}=\frac{-390}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}=-\frac{195}{4}
\frac{-390}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{195}i}{2} x=-\frac{\sqrt{195}i}{2}
Tenglama yechildi.
8x^{2}=15\left(-26\right)
-26 olish uchun 18 dan 44 ni ayirish.
8x^{2}=-390
-390 hosil qilish uchun 15 va -26 ni ko'paytirish.
8x^{2}+390=0
390 ni ikki tarafga qo’shing.
x=\frac{0±\sqrt{0^{2}-4\times 8\times 390}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 0 ni b va 390 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 8\times 390}}{2\times 8}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-32\times 390}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-12480}}{2\times 8}
-32 ni 390 marotabaga ko'paytirish.
x=\frac{0±8\sqrt{195}i}{2\times 8}
-12480 ning kvadrat ildizini chiqarish.
x=\frac{0±8\sqrt{195}i}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{\sqrt{195}i}{2}
x=\frac{0±8\sqrt{195}i}{16} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{195}i}{2}
x=\frac{0±8\sqrt{195}i}{16} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{195}i}{2} x=-\frac{\sqrt{195}i}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}