Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{-116}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}=-\frac{29}{2}
\frac{-116}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{58}i}{2} x=-\frac{\sqrt{58}i}{2}
Tenglama yechildi.
x^{2}=\frac{-116}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}=-\frac{29}{2}
\frac{-116}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{29}{2}=0
\frac{29}{2} ni ikki tarafga qo’shing.
x=\frac{0±\sqrt{0^{2}-4\times \frac{29}{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va \frac{29}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times \frac{29}{2}}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-58}}{2}
-4 ni \frac{29}{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{58}i}{2}
-58 ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{58}i}{2}
x=\frac{0±\sqrt{58}i}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{58}i}{2}
x=\frac{0±\sqrt{58}i}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{58}i}{2} x=-\frac{\sqrt{58}i}{2}
Tenglama yechildi.