x uchun yechish
x=\frac{\sqrt{97}-1}{16}\approx 0,553053613
x=\frac{-\sqrt{97}-1}{16}\approx -0,678053613
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x^{2}+x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\times 8\left(-3\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 1 ni b va -3 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 8\left(-3\right)}}{2\times 8}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-32\left(-3\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+96}}{2\times 8}
-32 ni -3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{97}}{2\times 8}
1 ni 96 ga qo'shish.
x=\frac{-1±\sqrt{97}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{\sqrt{97}-1}{16}
x=\frac{-1±\sqrt{97}}{16} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{97} ga qo'shish.
x=\frac{-\sqrt{97}-1}{16}
x=\frac{-1±\sqrt{97}}{16} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{97} ni ayirish.
x=\frac{\sqrt{97}-1}{16} x=\frac{-\sqrt{97}-1}{16}
Tenglama yechildi.
8x^{2}+x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8x^{2}+x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
8x^{2}+x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
8x^{2}+x=3
0 dan -3 ni ayirish.
\frac{8x^{2}+x}{8}=\frac{3}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{1}{8}x=\frac{3}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{8}x+\left(\frac{1}{16}\right)^{2}=\frac{3}{8}+\left(\frac{1}{16}\right)^{2}
\frac{1}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{16} olish uchun. Keyin, \frac{1}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{3}{8}+\frac{1}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{16} kvadratini chiqarish.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{97}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{8} ni \frac{1}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{16}\right)^{2}=\frac{97}{256}
x^{2}+\frac{1}{8}x+\frac{1}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{16}\right)^{2}}=\sqrt{\frac{97}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{16}=\frac{\sqrt{97}}{16} x+\frac{1}{16}=-\frac{\sqrt{97}}{16}
Qisqartirish.
x=\frac{\sqrt{97}-1}{16} x=\frac{-\sqrt{97}-1}{16}
Tenglamaning ikkala tarafidan \frac{1}{16} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}