Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}+8x-1=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-1\right)}}{2\times 8}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 8 ni, b uchun 8 ni va c uchun -1 ni ayiring.
x=\frac{-8±4\sqrt{6}}{16}
Hisoblarni amalga oshiring.
x=\frac{\sqrt{6}}{4}-\frac{1}{2} x=-\frac{\sqrt{6}}{4}-\frac{1}{2}
x=\frac{-8±4\sqrt{6}}{16} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
8\left(x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\leq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
Koʻpaytma ≤0 boʻlishi uchun qiymatlardan biri x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right) va x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right) ≥0 va boshqasi ≤0 boʻlishi kerak. x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 va x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \emptyset
Bu har qanday x uchun xato.
x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 va x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
Ikkala tengsizlikning mos yechimi – x\in \left[-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\right].
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
Oxirgi yechim olingan yechimlarning birlashmasidir.