Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}+16x+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-16±\sqrt{16^{2}-4\times 8\times 4}}{2\times 8}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{256-4\times 8\times 4}}{2\times 8}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256-32\times 4}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256-128}}{2\times 8}
-32 ni 4 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{128}}{2\times 8}
256 ni -128 ga qo'shish.
x=\frac{-16±8\sqrt{2}}{2\times 8}
128 ning kvadrat ildizini chiqarish.
x=\frac{-16±8\sqrt{2}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{8\sqrt{2}-16}{16}
x=\frac{-16±8\sqrt{2}}{16} tenglamasini yeching, bunda ± musbat. -16 ni 8\sqrt{2} ga qo'shish.
x=\frac{\sqrt{2}}{2}-1
-16+8\sqrt{2} ni 16 ga bo'lish.
x=\frac{-8\sqrt{2}-16}{16}
x=\frac{-16±8\sqrt{2}}{16} tenglamasini yeching, bunda ± manfiy. -16 dan 8\sqrt{2} ni ayirish.
x=-\frac{\sqrt{2}}{2}-1
-16-8\sqrt{2} ni 16 ga bo'lish.
8x^{2}+16x+4=8\left(x-\left(\frac{\sqrt{2}}{2}-1\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\frac{\sqrt{2}}{2} ga va x_{2} uchun -1-\frac{\sqrt{2}}{2} ga bo‘ling.