Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x^{2}+13x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-13±\sqrt{13^{2}-4\times 8\times 10}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 13 ni b va 10 ni c bilan almashtiring.
x=\frac{-13±\sqrt{169-4\times 8\times 10}}{2\times 8}
13 kvadratini chiqarish.
x=\frac{-13±\sqrt{169-32\times 10}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{169-320}}{2\times 8}
-32 ni 10 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{-151}}{2\times 8}
169 ni -320 ga qo'shish.
x=\frac{-13±\sqrt{151}i}{2\times 8}
-151 ning kvadrat ildizini chiqarish.
x=\frac{-13±\sqrt{151}i}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{-13+\sqrt{151}i}{16}
x=\frac{-13±\sqrt{151}i}{16} tenglamasini yeching, bunda ± musbat. -13 ni i\sqrt{151} ga qo'shish.
x=\frac{-\sqrt{151}i-13}{16}
x=\frac{-13±\sqrt{151}i}{16} tenglamasini yeching, bunda ± manfiy. -13 dan i\sqrt{151} ni ayirish.
x=\frac{-13+\sqrt{151}i}{16} x=\frac{-\sqrt{151}i-13}{16}
Tenglama yechildi.
8x^{2}+13x+10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8x^{2}+13x+10-10=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
8x^{2}+13x=-10
O‘zidan 10 ayirilsa 0 qoladi.
\frac{8x^{2}+13x}{8}=-\frac{10}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\frac{13}{8}x=-\frac{10}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{13}{8}x=-\frac{5}{4}
\frac{-10}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{13}{8}x+\left(\frac{13}{16}\right)^{2}=-\frac{5}{4}+\left(\frac{13}{16}\right)^{2}
\frac{13}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{13}{16} olish uchun. Keyin, \frac{13}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{13}{8}x+\frac{169}{256}=-\frac{5}{4}+\frac{169}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{13}{16} kvadratini chiqarish.
x^{2}+\frac{13}{8}x+\frac{169}{256}=-\frac{151}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{4} ni \frac{169}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{13}{16}\right)^{2}=-\frac{151}{256}
x^{2}+\frac{13}{8}x+\frac{169}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{13}{16}\right)^{2}}=\sqrt{-\frac{151}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{13}{16}=\frac{\sqrt{151}i}{16} x+\frac{13}{16}=-\frac{\sqrt{151}i}{16}
Qisqartirish.
x=\frac{-13+\sqrt{151}i}{16} x=\frac{-\sqrt{151}i-13}{16}
Tenglamaning ikkala tarafidan \frac{13}{16} ni ayirish.