Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x-1=-x^{2}
Ikkala tarafdan 1 ni ayirish.
8x-1+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+8x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -1 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-1\right)}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{68}}{2}
64 ni 4 ga qo'shish.
x=\frac{-8±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-8}{2}
x=\frac{-8±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-4
-8+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-8}{2}
x=\frac{-8±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-4
-8-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-4 x=-\sqrt{17}-4
Tenglama yechildi.
8x+x^{2}=1
x^{2} ni ikki tarafga qo’shing.
x^{2}+8x=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+4^{2}=1+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=1+16
4 kvadratini chiqarish.
x^{2}+8x+16=17
1 ni 16 ga qo'shish.
\left(x+4\right)^{2}=17
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{17} x+4=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-4 x=-\sqrt{17}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
8x-1=-x^{2}
Ikkala tarafdan 1 ni ayirish.
8x-1+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}+8x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va -1 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-1\right)}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{68}}{2}
64 ni 4 ga qo'shish.
x=\frac{-8±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-8}{2}
x=\frac{-8±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-4
-8+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-8}{2}
x=\frac{-8±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-4
-8-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-4 x=-\sqrt{17}-4
Tenglama yechildi.
8x+x^{2}=1
x^{2} ni ikki tarafga qo’shing.
x^{2}+8x=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+4^{2}=1+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=1+16
4 kvadratini chiqarish.
x^{2}+8x+16=17
1 ni 16 ga qo'shish.
\left(x+4\right)^{2}=17
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{17} x+4=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-4 x=-\sqrt{17}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.