Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x+3-3x^{2}=35-x^{2}
3 olish uchun 2 va 1'ni qo'shing.
8x+3-3x^{2}-35=-x^{2}
Ikkala tarafdan 35 ni ayirish.
8x-32-3x^{2}=-x^{2}
-32 olish uchun 3 dan 35 ni ayirish.
8x-32-3x^{2}+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
8x-32-2x^{2}=0
-2x^{2} ni olish uchun -3x^{2} va x^{2} ni birlashtirish.
-2x^{2}+8x-32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-32\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 8 ni b va -32 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-32\right)}}{2\left(-2\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+8\left(-32\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-256}}{2\left(-2\right)}
8 ni -32 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{-192}}{2\left(-2\right)}
64 ni -256 ga qo'shish.
x=\frac{-8±8\sqrt{3}i}{2\left(-2\right)}
-192 ning kvadrat ildizini chiqarish.
x=\frac{-8±8\sqrt{3}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-8+8\sqrt{3}i}{-4}
x=\frac{-8±8\sqrt{3}i}{-4} tenglamasini yeching, bunda ± musbat. -8 ni 8i\sqrt{3} ga qo'shish.
x=-2\sqrt{3}i+2
-8+8i\sqrt{3} ni -4 ga bo'lish.
x=\frac{-8\sqrt{3}i-8}{-4}
x=\frac{-8±8\sqrt{3}i}{-4} tenglamasini yeching, bunda ± manfiy. -8 dan 8i\sqrt{3} ni ayirish.
x=2+2\sqrt{3}i
-8-8i\sqrt{3} ni -4 ga bo'lish.
x=-2\sqrt{3}i+2 x=2+2\sqrt{3}i
Tenglama yechildi.
8x+3-3x^{2}=35-x^{2}
3 olish uchun 2 va 1'ni qo'shing.
8x+3-3x^{2}+x^{2}=35
x^{2} ni ikki tarafga qo’shing.
8x+3-2x^{2}=35
-2x^{2} ni olish uchun -3x^{2} va x^{2} ni birlashtirish.
8x-2x^{2}=35-3
Ikkala tarafdan 3 ni ayirish.
8x-2x^{2}=32
32 olish uchun 35 dan 3 ni ayirish.
-2x^{2}+8x=32
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+8x}{-2}=\frac{32}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{8}{-2}x=\frac{32}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{32}{-2}
8 ni -2 ga bo'lish.
x^{2}-4x=-16
32 ni -2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-16+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-16+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-12
-16 ni 4 ga qo'shish.
\left(x-2\right)^{2}=-12
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-12}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2\sqrt{3}i x-2=-2\sqrt{3}i
Qisqartirish.
x=2+2\sqrt{3}i x=-2\sqrt{3}i+2
2 ni tenglamaning ikkala tarafiga qo'shish.