Asosiy tarkibga oʻtish
s uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8s^{2}+9s+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
s=\frac{-9±\sqrt{9^{2}-4\times 8\times 2}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 9 ni b va 2 ni c bilan almashtiring.
s=\frac{-9±\sqrt{81-4\times 8\times 2}}{2\times 8}
9 kvadratini chiqarish.
s=\frac{-9±\sqrt{81-32\times 2}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
s=\frac{-9±\sqrt{81-64}}{2\times 8}
-32 ni 2 marotabaga ko'paytirish.
s=\frac{-9±\sqrt{17}}{2\times 8}
81 ni -64 ga qo'shish.
s=\frac{-9±\sqrt{17}}{16}
2 ni 8 marotabaga ko'paytirish.
s=\frac{\sqrt{17}-9}{16}
s=\frac{-9±\sqrt{17}}{16} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{17} ga qo'shish.
s=\frac{-\sqrt{17}-9}{16}
s=\frac{-9±\sqrt{17}}{16} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{17} ni ayirish.
s=\frac{\sqrt{17}-9}{16} s=\frac{-\sqrt{17}-9}{16}
Tenglama yechildi.
8s^{2}+9s+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8s^{2}+9s+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
8s^{2}+9s=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{8s^{2}+9s}{8}=-\frac{2}{8}
Ikki tarafini 8 ga bo‘ling.
s^{2}+\frac{9}{8}s=-\frac{2}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
s^{2}+\frac{9}{8}s=-\frac{1}{4}
\frac{-2}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
s^{2}+\frac{9}{8}s+\left(\frac{9}{16}\right)^{2}=-\frac{1}{4}+\left(\frac{9}{16}\right)^{2}
\frac{9}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{16} olish uchun. Keyin, \frac{9}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
s^{2}+\frac{9}{8}s+\frac{81}{256}=-\frac{1}{4}+\frac{81}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{16} kvadratini chiqarish.
s^{2}+\frac{9}{8}s+\frac{81}{256}=\frac{17}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{4} ni \frac{81}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(s+\frac{9}{16}\right)^{2}=\frac{17}{256}
s^{2}+\frac{9}{8}s+\frac{81}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(s+\frac{9}{16}\right)^{2}}=\sqrt{\frac{17}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
s+\frac{9}{16}=\frac{\sqrt{17}}{16} s+\frac{9}{16}=-\frac{\sqrt{17}}{16}
Qisqartirish.
s=\frac{\sqrt{17}-9}{16} s=\frac{-\sqrt{17}-9}{16}
Tenglamaning ikkala tarafidan \frac{9}{16} ni ayirish.