Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

11p^{2}+8p-13=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
p=\frac{-8±\sqrt{8^{2}-4\times 11\left(-13\right)}}{2\times 11}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-8±\sqrt{64-4\times 11\left(-13\right)}}{2\times 11}
8 kvadratini chiqarish.
p=\frac{-8±\sqrt{64-44\left(-13\right)}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
p=\frac{-8±\sqrt{64+572}}{2\times 11}
-44 ni -13 marotabaga ko'paytirish.
p=\frac{-8±\sqrt{636}}{2\times 11}
64 ni 572 ga qo'shish.
p=\frac{-8±2\sqrt{159}}{2\times 11}
636 ning kvadrat ildizini chiqarish.
p=\frac{-8±2\sqrt{159}}{22}
2 ni 11 marotabaga ko'paytirish.
p=\frac{2\sqrt{159}-8}{22}
p=\frac{-8±2\sqrt{159}}{22} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{159} ga qo'shish.
p=\frac{\sqrt{159}-4}{11}
-8+2\sqrt{159} ni 22 ga bo'lish.
p=\frac{-2\sqrt{159}-8}{22}
p=\frac{-8±2\sqrt{159}}{22} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{159} ni ayirish.
p=\frac{-\sqrt{159}-4}{11}
-8-2\sqrt{159} ni 22 ga bo'lish.
11p^{2}+8p-13=11\left(p-\frac{\sqrt{159}-4}{11}\right)\left(p-\frac{-\sqrt{159}-4}{11}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-4+\sqrt{159}}{11} ga va x_{2} uchun \frac{-4-\sqrt{159}}{11} ga bo‘ling.