n uchun yechish
n=\frac{\sqrt{10}+1}{9}\approx 0,462475296
n=\frac{1-\sqrt{10}}{9}\approx -0,240253073
Baham ko'rish
Klipbordga nusxa olish
8n^{2}-4\left(1-2n\right)\left(2+8n\right)=0
-4 hosil qilish uchun -1 va 4 ni ko'paytirish.
8n^{2}+\left(-4+8n\right)\left(2+8n\right)=0
-4 ga 1-2n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8n^{2}-8-16n+64n^{2}=0
-4+8n ga 2+8n ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
72n^{2}-8-16n=0
72n^{2} ni olish uchun 8n^{2} va 64n^{2} ni birlashtirish.
72n^{2}-16n-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 72 ni a, -16 ni b va -8 ni c bilan almashtiring.
n=\frac{-\left(-16\right)±\sqrt{256-4\times 72\left(-8\right)}}{2\times 72}
-16 kvadratini chiqarish.
n=\frac{-\left(-16\right)±\sqrt{256-288\left(-8\right)}}{2\times 72}
-4 ni 72 marotabaga ko'paytirish.
n=\frac{-\left(-16\right)±\sqrt{256+2304}}{2\times 72}
-288 ni -8 marotabaga ko'paytirish.
n=\frac{-\left(-16\right)±\sqrt{2560}}{2\times 72}
256 ni 2304 ga qo'shish.
n=\frac{-\left(-16\right)±16\sqrt{10}}{2\times 72}
2560 ning kvadrat ildizini chiqarish.
n=\frac{16±16\sqrt{10}}{2\times 72}
-16 ning teskarisi 16 ga teng.
n=\frac{16±16\sqrt{10}}{144}
2 ni 72 marotabaga ko'paytirish.
n=\frac{16\sqrt{10}+16}{144}
n=\frac{16±16\sqrt{10}}{144} tenglamasini yeching, bunda ± musbat. 16 ni 16\sqrt{10} ga qo'shish.
n=\frac{\sqrt{10}+1}{9}
16+16\sqrt{10} ni 144 ga bo'lish.
n=\frac{16-16\sqrt{10}}{144}
n=\frac{16±16\sqrt{10}}{144} tenglamasini yeching, bunda ± manfiy. 16 dan 16\sqrt{10} ni ayirish.
n=\frac{1-\sqrt{10}}{9}
16-16\sqrt{10} ni 144 ga bo'lish.
n=\frac{\sqrt{10}+1}{9} n=\frac{1-\sqrt{10}}{9}
Tenglama yechildi.
8n^{2}-4\left(1-2n\right)\left(2+8n\right)=0
-4 hosil qilish uchun -1 va 4 ni ko'paytirish.
8n^{2}+\left(-4+8n\right)\left(2+8n\right)=0
-4 ga 1-2n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8n^{2}-8-16n+64n^{2}=0
-4+8n ga 2+8n ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
72n^{2}-8-16n=0
72n^{2} ni olish uchun 8n^{2} va 64n^{2} ni birlashtirish.
72n^{2}-16n=8
8 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{72n^{2}-16n}{72}=\frac{8}{72}
Ikki tarafini 72 ga bo‘ling.
n^{2}+\left(-\frac{16}{72}\right)n=\frac{8}{72}
72 ga bo'lish 72 ga ko'paytirishni bekor qiladi.
n^{2}-\frac{2}{9}n=\frac{8}{72}
\frac{-16}{72} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{2}{9}n=\frac{1}{9}
\frac{8}{72} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{2}{9}n+\left(-\frac{1}{9}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{9}\right)^{2}
-\frac{2}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{9} olish uchun. Keyin, -\frac{1}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{1}{9}+\frac{1}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{9} kvadratini chiqarish.
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{10}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{9} ni \frac{1}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{1}{9}\right)^{2}=\frac{10}{81}
n^{2}-\frac{2}{9}n+\frac{1}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{1}{9}\right)^{2}}=\sqrt{\frac{10}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{1}{9}=\frac{\sqrt{10}}{9} n-\frac{1}{9}=-\frac{\sqrt{10}}{9}
Qisqartirish.
n=\frac{\sqrt{10}+1}{9} n=\frac{1-\sqrt{10}}{9}
\frac{1}{9} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}