Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8n^{2}+33n+31=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-33±\sqrt{33^{2}-4\times 8\times 31}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 33 ni b va 31 ni c bilan almashtiring.
n=\frac{-33±\sqrt{1089-4\times 8\times 31}}{2\times 8}
33 kvadratini chiqarish.
n=\frac{-33±\sqrt{1089-32\times 31}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
n=\frac{-33±\sqrt{1089-992}}{2\times 8}
-32 ni 31 marotabaga ko'paytirish.
n=\frac{-33±\sqrt{97}}{2\times 8}
1089 ni -992 ga qo'shish.
n=\frac{-33±\sqrt{97}}{16}
2 ni 8 marotabaga ko'paytirish.
n=\frac{\sqrt{97}-33}{16}
n=\frac{-33±\sqrt{97}}{16} tenglamasini yeching, bunda ± musbat. -33 ni \sqrt{97} ga qo'shish.
n=\frac{-\sqrt{97}-33}{16}
n=\frac{-33±\sqrt{97}}{16} tenglamasini yeching, bunda ± manfiy. -33 dan \sqrt{97} ni ayirish.
n=\frac{\sqrt{97}-33}{16} n=\frac{-\sqrt{97}-33}{16}
Tenglama yechildi.
8n^{2}+33n+31=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8n^{2}+33n+31-31=-31
Tenglamaning ikkala tarafidan 31 ni ayirish.
8n^{2}+33n=-31
O‘zidan 31 ayirilsa 0 qoladi.
\frac{8n^{2}+33n}{8}=-\frac{31}{8}
Ikki tarafini 8 ga bo‘ling.
n^{2}+\frac{33}{8}n=-\frac{31}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{33}{8}n+\left(\frac{33}{16}\right)^{2}=-\frac{31}{8}+\left(\frac{33}{16}\right)^{2}
\frac{33}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{33}{16} olish uchun. Keyin, \frac{33}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{33}{8}n+\frac{1089}{256}=-\frac{31}{8}+\frac{1089}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{33}{16} kvadratini chiqarish.
n^{2}+\frac{33}{8}n+\frac{1089}{256}=\frac{97}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{31}{8} ni \frac{1089}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n+\frac{33}{16}\right)^{2}=\frac{97}{256}
n^{2}+\frac{33}{8}n+\frac{1089}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{33}{16}\right)^{2}}=\sqrt{\frac{97}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{33}{16}=\frac{\sqrt{97}}{16} n+\frac{33}{16}=-\frac{\sqrt{97}}{16}
Qisqartirish.
n=\frac{\sqrt{97}-33}{16} n=\frac{-\sqrt{97}-33}{16}
Tenglamaning ikkala tarafidan \frac{33}{16} ni ayirish.