Omil
\left(4b-3\right)\left(2b+1\right)
Baholash
\left(4b-3\right)\left(2b+1\right)
Baham ko'rish
Klipbordga nusxa olish
p+q=-2 pq=8\left(-3\right)=-24
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 8b^{2}+pb+qb-3 sifatida qayta yozilishi kerak. p va q ni topish uchun yechiladigan tizimni sozlang.
1,-24 2,-12 3,-8 4,-6
pq manfiy boʻlganda, p va q da qarama-qarshi belgilar bor. p+q manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -24-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Har bir juftlik yigʻindisini hisoblang.
p=-6 q=4
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(8b^{2}-6b\right)+\left(4b-3\right)
8b^{2}-2b-3 ni \left(8b^{2}-6b\right)+\left(4b-3\right) sifatida qaytadan yozish.
2b\left(4b-3\right)+4b-3
8b^{2}-6b ichida 2b ni ajrating.
\left(4b-3\right)\left(2b+1\right)
Distributiv funktsiyasidan foydalangan holda 4b-3 umumiy terminini chiqaring.
8b^{2}-2b-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 8\left(-3\right)}}{2\times 8}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-\left(-2\right)±\sqrt{4-4\times 8\left(-3\right)}}{2\times 8}
-2 kvadratini chiqarish.
b=\frac{-\left(-2\right)±\sqrt{4-32\left(-3\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
b=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 8}
-32 ni -3 marotabaga ko'paytirish.
b=\frac{-\left(-2\right)±\sqrt{100}}{2\times 8}
4 ni 96 ga qo'shish.
b=\frac{-\left(-2\right)±10}{2\times 8}
100 ning kvadrat ildizini chiqarish.
b=\frac{2±10}{2\times 8}
-2 ning teskarisi 2 ga teng.
b=\frac{2±10}{16}
2 ni 8 marotabaga ko'paytirish.
b=\frac{12}{16}
b=\frac{2±10}{16} tenglamasini yeching, bunda ± musbat. 2 ni 10 ga qo'shish.
b=\frac{3}{4}
\frac{12}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=-\frac{8}{16}
b=\frac{2±10}{16} tenglamasini yeching, bunda ± manfiy. 2 dan 10 ni ayirish.
b=-\frac{1}{2}
\frac{-8}{16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
8b^{2}-2b-3=8\left(b-\frac{3}{4}\right)\left(b-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3}{4} ga va x_{2} uchun -\frac{1}{2} ga bo‘ling.
8b^{2}-2b-3=8\left(b-\frac{3}{4}\right)\left(b+\frac{1}{2}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
8b^{2}-2b-3=8\times \frac{4b-3}{4}\left(b+\frac{1}{2}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{3}{4} ni b dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
8b^{2}-2b-3=8\times \frac{4b-3}{4}\times \frac{2b+1}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni b ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
8b^{2}-2b-3=8\times \frac{\left(4b-3\right)\left(2b+1\right)}{4\times 2}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4b-3}{4} ni \frac{2b+1}{2} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
8b^{2}-2b-3=8\times \frac{\left(4b-3\right)\left(2b+1\right)}{8}
4 ni 2 marotabaga ko'paytirish.
8b^{2}-2b-3=\left(4b-3\right)\left(2b+1\right)
8 va 8 ichida eng katta umumiy 8 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}