x uchun yechish
x = \frac{\sqrt{37} + 1}{4} \approx 1,770690633
x=\frac{1-\sqrt{37}}{4}\approx -1,270690633
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x^{2}-4x=18
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
8x^{2}-4x-18=18-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
8x^{2}-4x-18=0
O‘zidan 18 ayirilsa 0 qoladi.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 8\left(-18\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -4 ni b va -18 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 8\left(-18\right)}}{2\times 8}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-32\left(-18\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+576}}{2\times 8}
-32 ni -18 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{592}}{2\times 8}
16 ni 576 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{37}}{2\times 8}
592 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{37}}{2\times 8}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4\sqrt{37}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{4\sqrt{37}+4}{16}
x=\frac{4±4\sqrt{37}}{16} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}+1}{4}
4+4\sqrt{37} ni 16 ga bo'lish.
x=\frac{4-4\sqrt{37}}{16}
x=\frac{4±4\sqrt{37}}{16} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{37} ni ayirish.
x=\frac{1-\sqrt{37}}{4}
4-4\sqrt{37} ni 16 ga bo'lish.
x=\frac{\sqrt{37}+1}{4} x=\frac{1-\sqrt{37}}{4}
Tenglama yechildi.
8x^{2}-4x=18
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{8x^{2}-4x}{8}=\frac{18}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\left(-\frac{4}{8}\right)x=\frac{18}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{18}{8}
\frac{-4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=\frac{9}{4}
\frac{18}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{9}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{4}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{37}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{4} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=\frac{37}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{37}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{37}}{4} x-\frac{1}{4}=-\frac{\sqrt{37}}{4}
Qisqartirish.
x=\frac{\sqrt{37}+1}{4} x=\frac{1-\sqrt{37}}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}