x uchun yechish
x = \frac{\sqrt{21} + 3}{2} \approx 3,791287847
x=\frac{3-\sqrt{21}}{2}\approx -0,791287847
Grafik
Baham ko'rish
Klipbordga nusxa olish
8x^{2}-24x-24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 8\left(-24\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -24 ni b va -24 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 8\left(-24\right)}}{2\times 8}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576-32\left(-24\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576+768}}{2\times 8}
-32 ni -24 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{1344}}{2\times 8}
576 ni 768 ga qo'shish.
x=\frac{-\left(-24\right)±8\sqrt{21}}{2\times 8}
1344 ning kvadrat ildizini chiqarish.
x=\frac{24±8\sqrt{21}}{2\times 8}
-24 ning teskarisi 24 ga teng.
x=\frac{24±8\sqrt{21}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{8\sqrt{21}+24}{16}
x=\frac{24±8\sqrt{21}}{16} tenglamasini yeching, bunda ± musbat. 24 ni 8\sqrt{21} ga qo'shish.
x=\frac{\sqrt{21}+3}{2}
24+8\sqrt{21} ni 16 ga bo'lish.
x=\frac{24-8\sqrt{21}}{16}
x=\frac{24±8\sqrt{21}}{16} tenglamasini yeching, bunda ± manfiy. 24 dan 8\sqrt{21} ni ayirish.
x=\frac{3-\sqrt{21}}{2}
24-8\sqrt{21} ni 16 ga bo'lish.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
Tenglama yechildi.
8x^{2}-24x-24=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
8x^{2}-24x-24-\left(-24\right)=-\left(-24\right)
24 ni tenglamaning ikkala tarafiga qo'shish.
8x^{2}-24x=-\left(-24\right)
O‘zidan -24 ayirilsa 0 qoladi.
8x^{2}-24x=24
0 dan -24 ni ayirish.
\frac{8x^{2}-24x}{8}=\frac{24}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\left(-\frac{24}{8}\right)x=\frac{24}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{24}{8}
-24 ni 8 ga bo'lish.
x^{2}-3x=3
24 ni 8 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
3 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}