g uchun yechish
g = \frac{\sqrt{249} + 3}{2} \approx 9,389866919
g=\frac{3-\sqrt{249}}{2}\approx -6,389866919
Baham ko'rish
Klipbordga nusxa olish
3g^{2}-9g+8=188
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3g^{2}-9g+8-188=188-188
Tenglamaning ikkala tarafidan 188 ni ayirish.
3g^{2}-9g+8-188=0
O‘zidan 188 ayirilsa 0 qoladi.
3g^{2}-9g-180=0
8 dan 188 ni ayirish.
g=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-180\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -9 ni b va -180 ni c bilan almashtiring.
g=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-180\right)}}{2\times 3}
-9 kvadratini chiqarish.
g=\frac{-\left(-9\right)±\sqrt{81-12\left(-180\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
g=\frac{-\left(-9\right)±\sqrt{81+2160}}{2\times 3}
-12 ni -180 marotabaga ko'paytirish.
g=\frac{-\left(-9\right)±\sqrt{2241}}{2\times 3}
81 ni 2160 ga qo'shish.
g=\frac{-\left(-9\right)±3\sqrt{249}}{2\times 3}
2241 ning kvadrat ildizini chiqarish.
g=\frac{9±3\sqrt{249}}{2\times 3}
-9 ning teskarisi 9 ga teng.
g=\frac{9±3\sqrt{249}}{6}
2 ni 3 marotabaga ko'paytirish.
g=\frac{3\sqrt{249}+9}{6}
g=\frac{9±3\sqrt{249}}{6} tenglamasini yeching, bunda ± musbat. 9 ni 3\sqrt{249} ga qo'shish.
g=\frac{\sqrt{249}+3}{2}
9+3\sqrt{249} ni 6 ga bo'lish.
g=\frac{9-3\sqrt{249}}{6}
g=\frac{9±3\sqrt{249}}{6} tenglamasini yeching, bunda ± manfiy. 9 dan 3\sqrt{249} ni ayirish.
g=\frac{3-\sqrt{249}}{2}
9-3\sqrt{249} ni 6 ga bo'lish.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
Tenglama yechildi.
3g^{2}-9g+8=188
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3g^{2}-9g+8-8=188-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
3g^{2}-9g=188-8
O‘zidan 8 ayirilsa 0 qoladi.
3g^{2}-9g=180
188 dan 8 ni ayirish.
\frac{3g^{2}-9g}{3}=\frac{180}{3}
Ikki tarafini 3 ga bo‘ling.
g^{2}+\left(-\frac{9}{3}\right)g=\frac{180}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
g^{2}-3g=\frac{180}{3}
-9 ni 3 ga bo'lish.
g^{2}-3g=60
180 ni 3 ga bo'lish.
g^{2}-3g+\left(-\frac{3}{2}\right)^{2}=60+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
g^{2}-3g+\frac{9}{4}=60+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
g^{2}-3g+\frac{9}{4}=\frac{249}{4}
60 ni \frac{9}{4} ga qo'shish.
\left(g-\frac{3}{2}\right)^{2}=\frac{249}{4}
g^{2}-3g+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(g-\frac{3}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
g-\frac{3}{2}=\frac{\sqrt{249}}{2} g-\frac{3}{2}=-\frac{\sqrt{249}}{2}
Qisqartirish.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}