Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{9}{2}x-\frac{5}{2}x^{2}=1000
\frac{9}{2}x ni olish uchun 7x va -\frac{5}{2}x ni birlashtirish.
\frac{9}{2}x-\frac{5}{2}x^{2}-1000=0
Ikkala tarafdan 1000 ni ayirish.
-\frac{5}{2}x^{2}+\frac{9}{2}x-1000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\left(-\frac{5}{2}\right)\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{5}{2} ni a, \frac{9}{2} ni b va -1000 ni c bilan almashtiring.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\left(-\frac{5}{2}\right)\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+10\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
-4 ni -\frac{5}{2} marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-10000}}{2\left(-\frac{5}{2}\right)}
10 ni -1000 marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{-\frac{39919}{4}}}{2\left(-\frac{5}{2}\right)}
\frac{81}{4} ni -10000 ga qo'shish.
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{2\left(-\frac{5}{2}\right)}
-\frac{39919}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5}
2 ni -\frac{5}{2} marotabaga ko'paytirish.
x=\frac{-9+\sqrt{39919}i}{-5\times 2}
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5} tenglamasini yeching, bunda ± musbat. -\frac{9}{2} ni \frac{i\sqrt{39919}}{2} ga qo'shish.
x=\frac{-\sqrt{39919}i+9}{10}
\frac{-9+i\sqrt{39919}}{2} ni -5 ga bo'lish.
x=\frac{-\sqrt{39919}i-9}{-5\times 2}
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5} tenglamasini yeching, bunda ± manfiy. -\frac{9}{2} dan \frac{i\sqrt{39919}}{2} ni ayirish.
x=\frac{9+\sqrt{39919}i}{10}
\frac{-9-i\sqrt{39919}}{2} ni -5 ga bo'lish.
x=\frac{-\sqrt{39919}i+9}{10} x=\frac{9+\sqrt{39919}i}{10}
Tenglama yechildi.
\frac{9}{2}x-\frac{5}{2}x^{2}=1000
\frac{9}{2}x ni olish uchun 7x va -\frac{5}{2}x ni birlashtirish.
-\frac{5}{2}x^{2}+\frac{9}{2}x=1000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{5}{2}x^{2}+\frac{9}{2}x}{-\frac{5}{2}}=\frac{1000}{-\frac{5}{2}}
Tenglamaning ikki tarafini -\frac{5}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{\frac{9}{2}}{-\frac{5}{2}}x=\frac{1000}{-\frac{5}{2}}
-\frac{5}{2} ga bo'lish -\frac{5}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{5}x=\frac{1000}{-\frac{5}{2}}
\frac{9}{2} ni -\frac{5}{2} ga bo'lish \frac{9}{2} ga k'paytirish -\frac{5}{2} ga qaytarish.
x^{2}-\frac{9}{5}x=-400
1000 ni -\frac{5}{2} ga bo'lish 1000 ga k'paytirish -\frac{5}{2} ga qaytarish.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=-400+\left(-\frac{9}{10}\right)^{2}
-\frac{9}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{10} olish uchun. Keyin, -\frac{9}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{5}x+\frac{81}{100}=-400+\frac{81}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{10} kvadratini chiqarish.
x^{2}-\frac{9}{5}x+\frac{81}{100}=-\frac{39919}{100}
-400 ni \frac{81}{100} ga qo'shish.
\left(x-\frac{9}{10}\right)^{2}=-\frac{39919}{100}
x^{2}-\frac{9}{5}x+\frac{81}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{-\frac{39919}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{10}=\frac{\sqrt{39919}i}{10} x-\frac{9}{10}=-\frac{\sqrt{39919}i}{10}
Qisqartirish.
x=\frac{9+\sqrt{39919}i}{10} x=\frac{-\sqrt{39919}i+9}{10}
\frac{9}{10} ni tenglamaning ikkala tarafiga qo'shish.