x uchun yechish
x = \frac{\sqrt{40081} - 9}{10} \approx 19,120239759
x=\frac{-\sqrt{40081}-9}{10}\approx -20,920239759
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{9}{2}x+\frac{5}{2}x^{2}=1000
\frac{9}{2}x ni olish uchun 7x va -\frac{5}{2}x ni birlashtirish.
\frac{9}{2}x+\frac{5}{2}x^{2}-1000=0
Ikkala tarafdan 1000 ni ayirish.
\frac{5}{2}x^{2}+\frac{9}{2}x-1000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{5}{2}\left(-1000\right)}}{2\times \frac{5}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{5}{2} ni a, \frac{9}{2} ni b va -1000 ni c bilan almashtiring.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{5}{2}\left(-1000\right)}}{2\times \frac{5}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-10\left(-1000\right)}}{2\times \frac{5}{2}}
-4 ni \frac{5}{2} marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+10000}}{2\times \frac{5}{2}}
-10 ni -1000 marotabaga ko'paytirish.
x=\frac{-\frac{9}{2}±\sqrt{\frac{40081}{4}}}{2\times \frac{5}{2}}
\frac{81}{4} ni 10000 ga qo'shish.
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{2\times \frac{5}{2}}
\frac{40081}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5}
2 ni \frac{5}{2} marotabaga ko'paytirish.
x=\frac{\sqrt{40081}-9}{2\times 5}
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5} tenglamasini yeching, bunda ± musbat. -\frac{9}{2} ni \frac{\sqrt{40081}}{2} ga qo'shish.
x=\frac{\sqrt{40081}-9}{10}
\frac{-9+\sqrt{40081}}{2} ni 5 ga bo'lish.
x=\frac{-\sqrt{40081}-9}{2\times 5}
x=\frac{-\frac{9}{2}±\frac{\sqrt{40081}}{2}}{5} tenglamasini yeching, bunda ± manfiy. -\frac{9}{2} dan \frac{\sqrt{40081}}{2} ni ayirish.
x=\frac{-\sqrt{40081}-9}{10}
\frac{-9-\sqrt{40081}}{2} ni 5 ga bo'lish.
x=\frac{\sqrt{40081}-9}{10} x=\frac{-\sqrt{40081}-9}{10}
Tenglama yechildi.
\frac{9}{2}x+\frac{5}{2}x^{2}=1000
\frac{9}{2}x ni olish uchun 7x va -\frac{5}{2}x ni birlashtirish.
\frac{5}{2}x^{2}+\frac{9}{2}x=1000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{5}{2}x^{2}+\frac{9}{2}x}{\frac{5}{2}}=\frac{1000}{\frac{5}{2}}
Tenglamaning ikki tarafini \frac{5}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{\frac{9}{2}}{\frac{5}{2}}x=\frac{1000}{\frac{5}{2}}
\frac{5}{2} ga bo'lish \frac{5}{2} ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{5}x=\frac{1000}{\frac{5}{2}}
\frac{9}{2} ni \frac{5}{2} ga bo'lish \frac{9}{2} ga k'paytirish \frac{5}{2} ga qaytarish.
x^{2}+\frac{9}{5}x=400
1000 ni \frac{5}{2} ga bo'lish 1000 ga k'paytirish \frac{5}{2} ga qaytarish.
x^{2}+\frac{9}{5}x+\left(\frac{9}{10}\right)^{2}=400+\left(\frac{9}{10}\right)^{2}
\frac{9}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{10} olish uchun. Keyin, \frac{9}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{5}x+\frac{81}{100}=400+\frac{81}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{10} kvadratini chiqarish.
x^{2}+\frac{9}{5}x+\frac{81}{100}=\frac{40081}{100}
400 ni \frac{81}{100} ga qo'shish.
\left(x+\frac{9}{10}\right)^{2}=\frac{40081}{100}
x^{2}+\frac{9}{5}x+\frac{81}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{10}\right)^{2}}=\sqrt{\frac{40081}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{10}=\frac{\sqrt{40081}}{10} x+\frac{9}{10}=-\frac{\sqrt{40081}}{10}
Qisqartirish.
x=\frac{\sqrt{40081}-9}{10} x=\frac{-\sqrt{40081}-9}{10}
Tenglamaning ikkala tarafidan \frac{9}{10} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}