x uchun yechish
x=\frac{\sqrt{24178}}{314}\approx 0,495199889
x=-\frac{\sqrt{24178}}{314}\approx -0,495199889
Grafik
Viktorina
Polynomial
77=314 \times x \times x
Baham ko'rish
Klipbordga nusxa olish
77=314x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
314x^{2}=77
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}=\frac{77}{314}
Ikki tarafini 314 ga bo‘ling.
x=\frac{\sqrt{24178}}{314} x=-\frac{\sqrt{24178}}{314}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
77=314x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
314x^{2}=77
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
314x^{2}-77=0
Ikkala tarafdan 77 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 314\left(-77\right)}}{2\times 314}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 314 ni a, 0 ni b va -77 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 314\left(-77\right)}}{2\times 314}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-1256\left(-77\right)}}{2\times 314}
-4 ni 314 marotabaga ko'paytirish.
x=\frac{0±\sqrt{96712}}{2\times 314}
-1256 ni -77 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{24178}}{2\times 314}
96712 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{24178}}{628}
2 ni 314 marotabaga ko'paytirish.
x=\frac{\sqrt{24178}}{314}
x=\frac{0±2\sqrt{24178}}{628} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{24178}}{314}
x=\frac{0±2\sqrt{24178}}{628} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{24178}}{314} x=-\frac{\sqrt{24178}}{314}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}