Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

76+x\left(1126-x\right)=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
76+1126x-x^{2}=x^{2}
x ga 1126-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76+1126x-x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
76+1126x-2x^{2}=0
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
-2x^{2}+1126x+76=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1126±\sqrt{1126^{2}-4\left(-2\right)\times 76}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 1126 ni b va 76 ni c bilan almashtiring.
x=\frac{-1126±\sqrt{1267876-4\left(-2\right)\times 76}}{2\left(-2\right)}
1126 kvadratini chiqarish.
x=\frac{-1126±\sqrt{1267876+8\times 76}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-1126±\sqrt{1267876+608}}{2\left(-2\right)}
8 ni 76 marotabaga ko'paytirish.
x=\frac{-1126±\sqrt{1268484}}{2\left(-2\right)}
1267876 ni 608 ga qo'shish.
x=\frac{-1126±2\sqrt{317121}}{2\left(-2\right)}
1268484 ning kvadrat ildizini chiqarish.
x=\frac{-1126±2\sqrt{317121}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{317121}-1126}{-4}
x=\frac{-1126±2\sqrt{317121}}{-4} tenglamasini yeching, bunda ± musbat. -1126 ni 2\sqrt{317121} ga qo'shish.
x=\frac{563-\sqrt{317121}}{2}
-1126+2\sqrt{317121} ni -4 ga bo'lish.
x=\frac{-2\sqrt{317121}-1126}{-4}
x=\frac{-1126±2\sqrt{317121}}{-4} tenglamasini yeching, bunda ± manfiy. -1126 dan 2\sqrt{317121} ni ayirish.
x=\frac{\sqrt{317121}+563}{2}
-1126-2\sqrt{317121} ni -4 ga bo'lish.
x=\frac{563-\sqrt{317121}}{2} x=\frac{\sqrt{317121}+563}{2}
Tenglama yechildi.
76+x\left(1126-x\right)=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
76+1126x-x^{2}=x^{2}
x ga 1126-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76+1126x-x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
76+1126x-2x^{2}=0
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
1126x-2x^{2}=-76
Ikkala tarafdan 76 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x^{2}+1126x=-76
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+1126x}{-2}=-\frac{76}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{1126}{-2}x=-\frac{76}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-563x=-\frac{76}{-2}
1126 ni -2 ga bo'lish.
x^{2}-563x=38
-76 ni -2 ga bo'lish.
x^{2}-563x+\left(-\frac{563}{2}\right)^{2}=38+\left(-\frac{563}{2}\right)^{2}
-563 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{563}{2} olish uchun. Keyin, -\frac{563}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-563x+\frac{316969}{4}=38+\frac{316969}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{563}{2} kvadratini chiqarish.
x^{2}-563x+\frac{316969}{4}=\frac{317121}{4}
38 ni \frac{316969}{4} ga qo'shish.
\left(x-\frac{563}{2}\right)^{2}=\frac{317121}{4}
x^{2}-563x+\frac{316969}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{563}{2}\right)^{2}}=\sqrt{\frac{317121}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{563}{2}=\frac{\sqrt{317121}}{2} x-\frac{563}{2}=-\frac{\sqrt{317121}}{2}
Qisqartirish.
x=\frac{\sqrt{317121}+563}{2} x=\frac{563-\sqrt{317121}}{2}
\frac{563}{2} ni tenglamaning ikkala tarafiga qo'shish.