x uchun yechish
x = \frac{\sqrt{317121} + 563}{2} \approx 563,06748747
x=\frac{563-\sqrt{317121}}{2}\approx -0,06748747
Grafik
Baham ko'rish
Klipbordga nusxa olish
76+x\left(1126-x\right)=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
76+1126x-x^{2}=x^{2}
x ga 1126-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76+1126x-x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
76+1126x-2x^{2}=0
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
-2x^{2}+1126x+76=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1126±\sqrt{1126^{2}-4\left(-2\right)\times 76}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 1126 ni b va 76 ni c bilan almashtiring.
x=\frac{-1126±\sqrt{1267876-4\left(-2\right)\times 76}}{2\left(-2\right)}
1126 kvadratini chiqarish.
x=\frac{-1126±\sqrt{1267876+8\times 76}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-1126±\sqrt{1267876+608}}{2\left(-2\right)}
8 ni 76 marotabaga ko'paytirish.
x=\frac{-1126±\sqrt{1268484}}{2\left(-2\right)}
1267876 ni 608 ga qo'shish.
x=\frac{-1126±2\sqrt{317121}}{2\left(-2\right)}
1268484 ning kvadrat ildizini chiqarish.
x=\frac{-1126±2\sqrt{317121}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{317121}-1126}{-4}
x=\frac{-1126±2\sqrt{317121}}{-4} tenglamasini yeching, bunda ± musbat. -1126 ni 2\sqrt{317121} ga qo'shish.
x=\frac{563-\sqrt{317121}}{2}
-1126+2\sqrt{317121} ni -4 ga bo'lish.
x=\frac{-2\sqrt{317121}-1126}{-4}
x=\frac{-1126±2\sqrt{317121}}{-4} tenglamasini yeching, bunda ± manfiy. -1126 dan 2\sqrt{317121} ni ayirish.
x=\frac{\sqrt{317121}+563}{2}
-1126-2\sqrt{317121} ni -4 ga bo'lish.
x=\frac{563-\sqrt{317121}}{2} x=\frac{\sqrt{317121}+563}{2}
Tenglama yechildi.
76+x\left(1126-x\right)=x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
76+1126x-x^{2}=x^{2}
x ga 1126-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76+1126x-x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
76+1126x-2x^{2}=0
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
1126x-2x^{2}=-76
Ikkala tarafdan 76 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x^{2}+1126x=-76
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+1126x}{-2}=-\frac{76}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{1126}{-2}x=-\frac{76}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-563x=-\frac{76}{-2}
1126 ni -2 ga bo'lish.
x^{2}-563x=38
-76 ni -2 ga bo'lish.
x^{2}-563x+\left(-\frac{563}{2}\right)^{2}=38+\left(-\frac{563}{2}\right)^{2}
-563 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{563}{2} olish uchun. Keyin, -\frac{563}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-563x+\frac{316969}{4}=38+\frac{316969}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{563}{2} kvadratini chiqarish.
x^{2}-563x+\frac{316969}{4}=\frac{317121}{4}
38 ni \frac{316969}{4} ga qo'shish.
\left(x-\frac{563}{2}\right)^{2}=\frac{317121}{4}
x^{2}-563x+\frac{316969}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{563}{2}\right)^{2}}=\sqrt{\frac{317121}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{563}{2}=\frac{\sqrt{317121}}{2} x-\frac{563}{2}=-\frac{\sqrt{317121}}{2}
Qisqartirish.
x=\frac{\sqrt{317121}+563}{2} x=\frac{563-\sqrt{317121}}{2}
\frac{563}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}