x uchun yechish
x=6\sqrt{30}+34\approx 66,86335345
x=34-6\sqrt{30}\approx 1,13664655
Grafik
Baham ko'rish
Klipbordga nusxa olish
76x-76-x^{2}=8x
Ikkala tarafdan x^{2} ni ayirish.
76x-76-x^{2}-8x=0
Ikkala tarafdan 8x ni ayirish.
68x-76-x^{2}=0
68x ni olish uchun 76x va -8x ni birlashtirish.
-x^{2}+68x-76=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-68±\sqrt{68^{2}-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 68 ni b va -76 ni c bilan almashtiring.
x=\frac{-68±\sqrt{4624-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
68 kvadratini chiqarish.
x=\frac{-68±\sqrt{4624+4\left(-76\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-68±\sqrt{4624-304}}{2\left(-1\right)}
4 ni -76 marotabaga ko'paytirish.
x=\frac{-68±\sqrt{4320}}{2\left(-1\right)}
4624 ni -304 ga qo'shish.
x=\frac{-68±12\sqrt{30}}{2\left(-1\right)}
4320 ning kvadrat ildizini chiqarish.
x=\frac{-68±12\sqrt{30}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{12\sqrt{30}-68}{-2}
x=\frac{-68±12\sqrt{30}}{-2} tenglamasini yeching, bunda ± musbat. -68 ni 12\sqrt{30} ga qo'shish.
x=34-6\sqrt{30}
-68+12\sqrt{30} ni -2 ga bo'lish.
x=\frac{-12\sqrt{30}-68}{-2}
x=\frac{-68±12\sqrt{30}}{-2} tenglamasini yeching, bunda ± manfiy. -68 dan 12\sqrt{30} ni ayirish.
x=6\sqrt{30}+34
-68-12\sqrt{30} ni -2 ga bo'lish.
x=34-6\sqrt{30} x=6\sqrt{30}+34
Tenglama yechildi.
76x-76-x^{2}=8x
Ikkala tarafdan x^{2} ni ayirish.
76x-76-x^{2}-8x=0
Ikkala tarafdan 8x ni ayirish.
68x-76-x^{2}=0
68x ni olish uchun 76x va -8x ni birlashtirish.
68x-x^{2}=76
76 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x^{2}+68x=76
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+68x}{-1}=\frac{76}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{68}{-1}x=\frac{76}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-68x=\frac{76}{-1}
68 ni -1 ga bo'lish.
x^{2}-68x=-76
76 ni -1 ga bo'lish.
x^{2}-68x+\left(-34\right)^{2}=-76+\left(-34\right)^{2}
-68 ni bo‘lish, x shartining koeffitsienti, 2 ga -34 olish uchun. Keyin, -34 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-68x+1156=-76+1156
-34 kvadratini chiqarish.
x^{2}-68x+1156=1080
-76 ni 1156 ga qo'shish.
\left(x-34\right)^{2}=1080
x^{2}-68x+1156 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-34\right)^{2}}=\sqrt{1080}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-34=6\sqrt{30} x-34=-6\sqrt{30}
Qisqartirish.
x=6\sqrt{30}+34 x=34-6\sqrt{30}
34 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}